login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214687
E.g.f.: Sum_{n>=0} exp(2*n*x) * Product_{k=1..n} (exp((2*k-1)*x) - 1).
2
1, 1, 11, 217, 7691, 430921, 35117531, 3927676537, 577640740331, 108115035641641, 25097054302205051, 7076531411753120857, 2382432541064412524171, 943997056642739165681161, 434864796716131476530668571, 230460477665217932140097413177
OFFSET
0,3
COMMENTS
Compare the e.g.f. to the identity:
exp(-x) = Sum_{n>=0} exp(2*n*x) * Product_{k=1..n} (1 - exp((2*k-1)*x)).
LINKS
Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
FORMULA
E.g.f. A(x) satisfies: A(x) = exp(-x)*(2*G(x) - 1),
where G(x) = Sum_{n>=0} Product_{k=1..n} (exp((2*k-1)*x) - 1) = e.g.f. of A215066.
a(n) ~ 2*sqrt(6) * 24^n * (n!)^2 / (sqrt(n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, May 05 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 11*x^2/2! + 217*x^3/3! + 7691*x^4/4! + 430921*x^5/5! +...
such that, by definition,
A(x) = 1 + exp(2*x)*(exp(x)-1) + exp(4*x)*(exp(x)-1)*(exp(3*x)-1)
+ exp(6*x)*(exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)
+ exp(8*x)*(exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) +...
Compare this series to the identity:
exp(-x) = 1 - exp(2*x)*(exp(x)-1) + exp(4*x)*(exp(x)-1)*(exp(3*x)-1)
- exp(6*x)*(exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)
+ exp(8*x)*(exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) +-...
The related e.g.f. of A215066 equals the series:
G(x) = 1 + (exp(x)-1) + (exp(x)-1)*(exp(3*x)-1)
+ (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)
+ (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) +...
or, more explicitly,
G(x) = 1 + x + 7*x^2/2! + 127*x^3/3! + 4315*x^4/4! + 235831*x^5/5! +...
such that G(x) satisfies:
G(x) = (1 + exp(x)*A(x))/2.
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n+1, exp(2*m*x+x*O(x^n))*prod(k=1, m, exp((2*k-1)*x+x*O(x^n))-1)), n)}
for(n=0, 26, print1(a(n), ", "))
CROSSREFS
Sequence in context: A357915 A187650 A357083 * A160074 A298889 A204236
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 01 2012
STATUS
approved