login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214686
Numerators of a series with denominators n! and sum 1.
2
1, 1, 7, 1, 23, 1, 47, 1, 79, 1, 113, 89, 23, 73, 31, 1, 283, 89, 113, 139, 173, 67, 47, 1, 619, 131, 109, 83, 113, 211, 191, 1, 1087, 1, 1223, 1, 1367, 1, 1511, 367, 83, 1, 1847, 1, 2017, 317, 571, 241, 199, 1, 2593, 367, 211, 271, 223, 1, 3229, 1117, 239, 1
OFFSET
2,3
COMMENTS
a(n) is the greatest integer x such that gcd(x,n!) = 1 and x/n! < 1 - sum_{j=2}^{n-1} a(j)/j!.
The infinite series sum_{n=2}^infinity a(n)/n! = 1
For each n, either a(n) = 1 or a(n) >= n+1.
LINKS
Robert Israel and T. D. Noe, Table of n, a(n) for n = 2..10000 (first 1000 terms from Robert Israel)
EXAMPLE
1 - a(2)/2! = 1/2 = 3/3!, gcd(2,3!)>1 so a(3) = 1.
1 - a(2)/2! - a(3)/3! = 8/4! so a(4) = 7.
MAPLE
N:= 100; a[2]:= 1; R[2]:= 1/2;
for j from 3 to N do
T:= R[j-1] *j!;
for x from T-1 by -1 while igcd(x, j!) > 1 do end do;
a[j]:= x;
R[j]:= R[j-1] - x/j!
end do:
seq(a[j], j=2..N);
MATHEMATICA
s = 1; Table[d = n! s; q = If[d <= n, 1, If[d <= n^2, Prime[PrimePi[d]], Print["d > n^2"]; Abort[]]]; s = s - q/n!; q, {n, 2, 100}] (* T. D. Noe, Jul 27 2012 *)
PROG
(Sage)
def A214686_list(n) :
a = [1]; R = 1/2
for j in (3..n+1) :
J = factorial(j)
T = R * J
for x in range(T-1, -1, -1) :
if gcd(x, J) == 1 : break
a.append(x)
R = R - x / J
return a
A214686_list(51) # Peter Luschny, Jul 27 2012
CROSSREFS
Sequence in context: A019431 A264615 A261248 * A211790 A064051 A147385
KEYWORD
nonn
AUTHOR
Robert Israel, Jul 25 2012
STATUS
approved