The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214684 a(1)=1, a(2)=1, and, for n>2, a(n)=(a(n-1)+a(n-2))/5^k, where 5^k is the highest power of 5 dividing a(n-1)+a(n-2). 6
1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 4, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
This sequence is periodic with period 1,1,2,3,1,4 of length 6.
It appears that for most choices of a(1), a(2), and divisor b^k (replacing 5^k), the resulting sequence is not periodic.
LINKS
B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614, 2014 and J. Int. Seq. 17 (2014) # 14.8.5
FORMULA
a(n) = A132739(a(n-1) + a(n-2)), for n>2, and a(1)=1, a(2)=1. - Michel Marcus, Jul 08 2014
G.f.: x*(1+x+2*x^2+3*x^3+x^4+4*x^5)/((1-x)*(1+x)*(1-x+x^2)*(1+x+x^2)) . - Colin Barker, Jul 08 2014
a(n) = -4*[n=0] + (1/3)*(2 + 2*(-1)^n + A010892(n) - 2*A010892(n-1) + 3*A049347(n) + 3*A049347(n-1)). - G. C. Greubel, Mar 08 2024
MATHEMATICA
CoefficientList[Series[(4*x^5 + x^4 + 3*x^3 + 2*x^2 + x + 1)/((1 - x)*(x + 1)*(x^2 - x + 1)*(x^2 + x + 1)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Jul 08 2014 *)
LinearRecurrence[{0, 0, 0, 0, 0, 1}, {1, 1, 2, 3, 1, 4}, 80] (* Ray Chandler, Aug 25 2015 *)
PROG
(PARI) lista(nn) = {va = vector(nn); va[1] = 1; va[2] = 1; for (n=3, nn, sump = va[n-1] + va[n-2]; va[n] = sump/5^(valuation(sump, 5)); ); va; } \\ Michel Marcus, Jul 08 2014
(PARI) Vec(-x*(4*x^5+x^4+3*x^3+2*x^2+x+1)/((x-1)*(x+1)*(x^2-x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Jul 08 2014
(Magma) I:=[1, 1, 2, 3, 1, 4]; [n le 6 select I[n] else Self(n-6): n in [1..100]]; // G. C. Greubel, Mar 08 2024
(SageMath)
def A214684_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+x+2*x^2+3*x^3+x^4+4*x^5)/(1-x^6) ).list()
a=A214684_list(100); a[1:] # G. C. Greubel, Mar 08 2024
CROSSREFS
Sequence in context: A211343 A039661 A293668 * A268727 A325542 A365715
KEYWORD
nonn,easy
AUTHOR
John W. Layman, Jul 25 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)