|
|
A015212
|
|
Sum of Gaussian binomial coefficients for q=21.
|
|
1
|
|
|
1, 2, 24, 928, 224096, 180925632, 915592324864, 15519120649837568, 1649093881865807133696, 586980815917441872922703872, 1309843539264798142345101012967424, 9790772765676733007363874643686313525248
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..50
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
|
|
FORMULA
|
a(0) = 1, a(1) = 2, a(n) = 2*a(n-1) + a(n-2)*((21^(n-1)) - 1). - Vincenzo Librandi, Nov 02 2012
|
|
MATHEMATICA
|
Total/@Table[QBinomial[n, m, 21], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *)
|
|
CROSSREFS
|
Row sums of triangle A022185.
Sequence in context: A012081 A137274 A002032 * A012228 A062029 A122551
Adjacent sequences: A015209 A015210 A015211 * A015213 A015214 A015215
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Olivier Gérard
|
|
STATUS
|
approved
|
|
|
|