This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022185 Triangle of Gaussian binomial coefficients [ n,k ] for q = 21. 17
 1, 1, 1, 1, 22, 1, 1, 463, 463, 1, 1, 9724, 204646, 9724, 1, 1, 204205, 90258610, 90258610, 204205, 1, 1, 4288306, 39804251215, 835975245820, 39804251215, 4288306, 1, 1, 90054427, 17553679074121, 7742006555790235 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. LINKS G. C. Greubel, Rows n=0..50 of triangle, flattened Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. FORMULA T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=21. - G. C. Greubel, May 30 2018 MATHEMATICA Table[QBinomial[n, k, 21], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 21; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 30 2018 *) PROG (PARI) {q=21; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:21 EST 2019. Contains 329847 sequences. (Running on oeis4.)