login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022184
Triangle of Gaussian binomial coefficients [ n,k ] for q = 20.
17
1, 1, 1, 1, 21, 1, 1, 421, 421, 1, 1, 8421, 168821, 8421, 1, 1, 168421, 67536821, 67536821, 168421, 1, 1, 3368421, 27014896821, 540362104821, 27014896821, 3368421, 1, 1, 67368421, 10805962096821, 4322923853464821
OFFSET
0,5
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=20. - G. C. Greubel, May 28 2018
MATHEMATICA
Table[QBinomial[n, k, 20], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 20; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 28 2018 *)
PROG
(PARI) {q=20; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 28 2018
CROSSREFS
Row sums give A015211.
Sequence in context: A350999 A291073 A172301 * A176643 A015147 A174945
KEYWORD
nonn,tabl
STATUS
approved