login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A022186
Triangle of Gaussian binomial coefficients [ n,k ] for q = 22.
17
1, 1, 1, 1, 23, 1, 1, 507, 507, 1, 1, 11155, 245895, 11155, 1, 1, 245411, 119024335, 119024335, 245411, 1, 1, 5399043, 57608023551, 1267490143415, 57608023551, 5399043, 1, 1, 118778947, 27882288797727, 13496292655106471
OFFSET
0,5
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=22. - G. C. Greubel, May 30 2018
MATHEMATICA
Table[QBinomial[n, k, 22], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 22; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 30 2018 *)
PROG
(PARI) {q=22; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 30 2018
CROSSREFS
Sequence in context: A234788 A144445 A174729 * A015151 A040539 A040540
KEYWORD
nonn,tabl
STATUS
approved