login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350999
Numerator of the limiting density of residues attained by the Fibonacci sequence modulo powers of the n-th prime.
1
21, 1, 1, 41, 145, 9, 13, 441, 409, 541, 19, 29, 715, 33, 625, 37, 4321, 25, 51, 44, 57, 49, 63, 17, 69, 6937, 8009, 3349, 49, 33, 12161, 21385, 109, 8961, 61, 10945, 113, 123, 21001, 137, 39961, 22205, 119, 149, 149, 6001, 12297, 37409, 171, 36341, 21, 149
OFFSET
1,1
COMMENTS
For a prime p, the limiting density of residues attained by the Fibonacci sequence modulo powers of p is the limit as m -> infinity of |{F(n) mod p^m : n >= 0}|/p^m.
LINKS
Nicholas Bragman and Eric Rowland, Limiting density of the Fibonacci sequence modulo powers of p, arXiv:2202.00704 [math.NT], 2022.
Eric Rowland and Reem Yassawi, p-adic asymptotic properties of constant-recursive sequences, Indagationes Mathematicae 28 (2017) 205-220.
EXAMPLE
Let p = 2. For all m >= 5, the residues attained modulo 2^m by the Fibonacci sequence have density 21/32.
Let p = 3. For all m >= 1, every residue modulo 3^m is attained by the Fibonacci sequence, so the density is 1.
Let p = 11. Rowland and Yassawi showed that the residues attained modulo 11^m by the Fibonacci sequence have approach density 145/264 as m -> infinity.
MATHEMATICA
density[2] := 21/32
density[p_?PrimeQ /; p >= 3] := Module[{restrictedperiodlength = 1, periodlength, wallexponent, lucaszeros, fullresidues, partialresidues},
NestWhile[
Function[values,
restrictedperiodlength++;
Mod[{{0, 1}, {1, 1}}.values, p]
],
{0, 1},
Function[values, Last[values] != 0]
];
periodlength = SelectFirst[
{1, 2, 4} restrictedperiodlength,
Function[n, Mod[Fibonacci[n + 1], p] == 1]
];
wallexponent = IntegerExponent[Fibonacci[restrictedperiodlength], p];
lucaszeros = Which[
OddQ[restrictedperiodlength], {},
!Divisible[restrictedperiodlength, 4], {restrictedperiodlength/2},
True, {restrictedperiodlength/2, (3 restrictedperiodlength)/2}
];
fullresidues = DeleteDuplicates[Mod[Fibonacci[Complement[Range[0, periodlength - 1], lucaszeros]], p^wallexponent]];
partialresidues = DeleteDuplicates[Mod[Fibonacci[lucaszeros], p^wallexponent]];
Length[fullresidues]/p^wallexponent + Length[Complement[partialresidues, fullresidues]]/(2 p^(2 wallexponent - 1) (p + 1))
]
Table[Numerator[density[p]], {p, Prime[Range[20]]}]
CROSSREFS
The denominators are A351000.
Sequence in context: A040442 A040441 A190581 * A291073 A172301 A022184
KEYWORD
nonn,frac
AUTHOR
Eric Rowland, Feb 02 2022
STATUS
approved