login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172301
Triangle T(n, k, q) = ((1-q)/(1-q^k))*c(n-1, q)*c(n, q)/(c(k-1,q)^2*c(n-k,q)*c(n-k+1, q)), where c(n, q) = Product_{j=1..n} (1-q^j) and q = 4, read by rows.
3
1, 1, 1, 1, 21, 1, 1, 357, 357, 1, 1, 5797, 98549, 5797, 1, 1, 93093, 25698101, 25698101, 93093, 1, 1, 1490853, 6608951349, 107316781429, 6608951349, 1490853, 1, 1, 23859109, 1693829725237, 441691010116213, 441691010116213, 1693829725237, 23859109, 1
OFFSET
1,5
FORMULA
T(n, k, q) = ((1-q)/(1-q^k))*c(n-1, q)*c(n, q)/(c(k-1,q)^2*c(n-k,q)*c(n-k+1, q)), where c(n, q) = Product_{j=1..n} (1-q^j) and q = 4.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 21, 1;
1, 357, 357, 1;
1, 5797, 98549, 5797, 1;
1, 93093, 25698101, 25698101, 93093, 1;
1, 1490853, 6608951349, 107316781429, 6608951349, 1490853, 1;
MATHEMATICA
c[n_, q_]:= QPochhammer[q, q, n];
T[n_, k_, q_]:= ((1-q)/(1-q^k))*c[n-1, q]*c[n, q]/(c[k-1, q]^2*c[n-k, q]*c[n-k+1, q]);
Table[T[n, k, 4], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
PROG
(Sage)
from sage.combinat.q_analogues import q_pochhammer
def c(n, q): return q_pochhammer(n, q, q)
def T(n, k, q): return ((1-q)/(1-q^k))*c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q))
[[T(n, k, 4) for k in (1..n)] for n in (1..10)] # G. C. Greubel, May 07 2021
CROSSREFS
Cf. A156916 (q=2), A172300 (q=3), this sequence (q=4), A172302 (q=5).
Sequence in context: A190581 A350999 A291073 * A022184 A176643 A015147
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 31 2010
EXTENSIONS
Edited by G. C. Greubel, May 07 2021
STATUS
approved