login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k, q) = ((1-q)/(1-q^k))*c(n-1, q)*c(n, q)/(c(k-1,q)^2*c(n-k,q)*c(n-k+1, q)), where c(n, q) = Product_{j=1..n} (1-q^j) and q = 4, read by rows.
3

%I #8 May 07 2021 09:17:53

%S 1,1,1,1,21,1,1,357,357,1,1,5797,98549,5797,1,1,93093,25698101,

%T 25698101,93093,1,1,1490853,6608951349,107316781429,6608951349,

%U 1490853,1,1,23859109,1693829725237,441691010116213,441691010116213,1693829725237,23859109,1

%N Triangle T(n, k, q) = ((1-q)/(1-q^k))*c(n-1, q)*c(n, q)/(c(k-1,q)^2*c(n-k,q)*c(n-k+1, q)), where c(n, q) = Product_{j=1..n} (1-q^j) and q = 4, read by rows.

%H G. C. Greubel, <a href="/A172301/b172301.txt">Rows n = 1..30 of the triangle, flattened</a>

%F T(n, k, q) = ((1-q)/(1-q^k))*c(n-1, q)*c(n, q)/(c(k-1,q)^2*c(n-k,q)*c(n-k+1, q)), where c(n, q) = Product_{j=1..n} (1-q^j) and q = 4.

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 21, 1;

%e 1, 357, 357, 1;

%e 1, 5797, 98549, 5797, 1;

%e 1, 93093, 25698101, 25698101, 93093, 1;

%e 1, 1490853, 6608951349, 107316781429, 6608951349, 1490853, 1;

%t c[n_, q_]:= QPochhammer[q, q, n];

%t T[n_, k_, q_]:= ((1-q)/(1-q^k))*c[n-1,q]*c[n,q]/(c[k-1,q]^2*c[n-k,q]*c[n-k+1,q]);

%t Table[T[n, k, 4], {n,10}, {k,n}]//Flatten (* modified by _G. C. Greubel_, May 07 2021 *)

%o (Sage)

%o from sage.combinat.q_analogues import q_pochhammer

%o def c(n,q): return q_pochhammer(n,q,q)

%o def T(n,k,q): return ((1-q)/(1-q^k))*c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q))

%o [[T(n,k,4) for k in (1..n)] for n in (1..10)] # _G. C. Greubel_, May 07 2021

%Y Cf. A156916 (q=2), A172300 (q=3), this sequence (q=4), A172302 (q=5).

%K nonn,tabl

%O 1,5

%A _Roger L. Bagula_, Jan 31 2010

%E Edited by _G. C. Greubel_, May 07 2021