The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143281 Number of binary words of length n containing at least one subword 101 and no subword 11. 2
 0, 0, 0, 1, 2, 4, 8, 15, 27, 48, 84, 145, 248, 421, 710, 1191, 1989, 3309, 5487, 9073, 14966, 24634, 40472, 66384, 108729, 177858, 290610, 474364, 773615, 1260643, 2052818, 3340662, 5433345, 8832432, 14351403, 23309326, 37844645, 61423513, 99663191, 161665653 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA G.f.: x^3/((x^2+x-1)*(x^3+x-1)). a(n) = A000045(n+2)-A000930(n+2). EXAMPLE a(6)=8 because 8 binary words of length 6 have at least one substring 101 and no substring 11: 000101, 001010, 010100, 101000, 010101, 101010, 101001, 100101. MAPLE a:= n-> coeff(series(x^3/((x^2+x-1)*(x^3+x-1)), x, n+1), x, n): seq(a(n), n=0..60); MATHEMATICA CoefficientList[Series[x^3/((x^2+x-1)*(x^3+x-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *) PROG (PARI) x='x+O('x^50); concat([0, 0, 0], Vec(x^3/((x^2+x-1)*(x^3+x-1)))) \\ G. C. Greubel, Apr 28 2017 CROSSREFS Cf. A000045, A000930, first column of A143291. Sequence in context: A222152 A000126 A182716 * A098057 A289692 A074029 Adjacent sequences:  A143278 A143279 A143280 * A143282 A143283 A143284 KEYWORD nonn AUTHOR Alois P. Heinz, Aug 04 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 22:55 EST 2020. Contains 332270 sequences. (Running on oeis4.)