The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344611 Number of integer partitions of 2n with reverse-alternating sum >= 0. 48
 1, 2, 4, 8, 15, 27, 48, 81, 135, 220, 352, 553, 859, 1313, 1986, 2969, 4394, 6439, 9357, 13479, 19273, 27353, 38558, 53998, 75168, 104022, 143172, 196021, 267051, 362086, 488733, 656802, 879026, 1171747, 1555997, 2058663, 2714133, 3566122, 4670256, 6096924, 7935184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. Also the number of reversed integer partitions of 2n with alternating sum >= 0. The reverse-alternating sum of a partition is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of partitions of 2n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of partitions of 2n whose parts are all even or whose greatest part is odd. LINKS FORMULA Conjecture: a(n) <= A160786(n). The difference is 0, 0, 0, 0, 1, 2, 4, 9, 16, 28, 48, 79, ... EXAMPLE The a(0) = 1 through a(4) = 15 partitions:   ()  (2)   (4)     (6)       (8)       (11)  (22)    (33)      (44)             (211)   (222)     (332)             (1111)  (321)     (422)                     (411)     (431)                     (2211)    (521)                     (21111)   (611)                     (111111)  (2222)                               (3311)                               (22211)                               (32111)                               (41111)                               (221111)                               (2111111)                               (11111111) MATHEMATICA sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]], {i, Length[y]}]; Table[Length[Select[IntegerPartitions[n], sats[#]>=0&]], {n, 0, 30, 2}] CROSSREFS The non-reversed version is A058696 (partitions of 2n). The ordered version appears to be A114121. Odd bisection of A344607. Row sums of A344610. The strict case is A344650. A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. A000070 counts partitions with alternating sum 1. A000097 counts partitions with alternating sum 2. A103919 counts partitions by sum and alternating sum. A120452 counts partitions of 2n with reverse-alternating sum 2. A316524 is the alternating sum of the prime indices of n (reverse: A344616). A325534/A325535 count separable/inseparable partitions. A344612 counts partitions by sum and rev-alt sum (strict: A344739). A344618 gives reverse-alternating sums of standard compositions. A344741 counts partitions of 2n with reverse-alternating sum -2. Cf. A001250, A027187, A028260, A116406, A119899, A124754, A152146, A239829, A344608, A344609, A344649, A344651, A344654. Sequence in context: A222151 A222152 A000126 * A182716 A143281 A098057 Adjacent sequences:  A344608 A344609 A344610 * A344612 A344613 A344614 KEYWORD nonn AUTHOR Gus Wiseman, May 30 2021 EXTENSIONS More terms from Bert Dobbelaere, Jun 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)