login
A344607
Number of integer partitions of n with reverse-alternating sum >= 0.
67
1, 1, 2, 2, 4, 4, 8, 8, 15, 16, 27, 29, 48, 52, 81, 90, 135, 151, 220, 248, 352, 400, 553, 632, 859, 985, 1313, 1512, 1986, 2291, 2969, 3431, 4394, 5084, 6439, 7456, 9357, 10836, 13479, 15613, 19273, 22316, 27353, 31659, 38558, 44601, 53998, 62416, 75168
OFFSET
0,3
COMMENTS
The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed integer partitions of n with alternating sum >= 0.
A formula for the reverse-alternating sum of a partition is: (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of integer partitions of n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of integer partitions of n whose parts are all even or whose greatest part is odd.
All integer partitions have alternating sum >= 0, so the non-reversed version is A000041.
Is this sequence weakly increasing? In particular, is A344611(n) <= A160786(n)?
FORMULA
a(n) + A344608(n) = A000041(n).
a(2n+1) = A160786(n).
EXAMPLE
The a(1) = 1 through a(8) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (221) (33) (322) (44)
(211) (311) (222) (331) (332)
(1111) (11111) (321) (421) (422)
(411) (511) (431)
(2211) (22111) (521)
(21111) (31111) (611)
(111111) (1111111) (2222)
(3311)
(22211)
(32111)
(41111)
(221111)
(2111111)
(11111111)
MATHEMATICA
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]], {i, Length[y]}];
Table[Length[Select[IntegerPartitions[n], sats[#]>=0&]], {n, 0, 30}]
CROSSREFS
The non-reversed version is A000041.
The opposite version (rev-alt sum <= 0) is A027187, ranked by A028260.
The strict case for n > 0 is A067659 (even bisection: A344650).
The ordered version appears to be A116406 (even bisection: A114121).
The odd bisection is A160786.
The complement is counted by A344608.
The Heinz numbers of these partitions are A344609 (complement: A119899).
The even bisection is A344611.
A000070 counts partitions with alternating sum 1 (reversed: A000004).
A000097 counts partitions with alternating sum 2 (reversed: A120452).
A035363 counts partitions with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum.
A316524 is the alternating sum of prime indices of n (reversed: A344616).
A325534/A325535 count separable/inseparable partitions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.
Sequence in context: A262966 A034397 A200750 * A325722 A279818 A263614
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 29 2021
STATUS
approved