login
A344612
Triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-alternating sum k ranging from -n to n in steps of 2.
109
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 3, 3, 1, 1, 0, 1, 2, 4, 3, 3, 1, 1, 0, 1, 2, 4, 5, 5, 3, 1, 1, 0, 1, 2, 4, 7, 5, 6, 3, 1, 1, 0, 1, 2, 4, 8, 7, 9, 6, 3, 1, 1, 0, 1, 2, 4, 8, 12, 7, 11, 6, 3, 1, 1, 0, 1, 2, 4, 8, 14, 11, 14, 12, 6, 3, 1, 1
OFFSET
0,13
COMMENTS
The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is also (-1)^(k-1) times the sum of the even-indexed parts minus the sum of the odd-indexed parts.
Also the number of reversed integer partitions of n with alternating sum k ranging from -n to n in steps of 2.
Also the number of integer partitions of n with (-1)^(m-1) * b = k where m is the greatest part and b is the number of odd parts, with k ranging from -n to n in steps of 2.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 1 1
0 1 2 1 1
0 1 2 2 1 1
0 1 2 3 3 1 1
0 1 2 4 3 3 1 1
0 1 2 4 5 5 3 1 1
0 1 2 4 7 5 6 3 1 1
0 1 2 4 8 7 9 6 3 1 1
0 1 2 4 8 12 7 11 6 3 1 1
0 1 2 4 8 14 11 14 12 6 3 1 1
0 1 2 4 8 15 19 11 18 12 6 3 1 1
0 1 2 4 8 15 24 15 23 20 12 6 3 1 1
0 1 2 4 8 15 26 30 15 31 21 12 6 3 1 1
For example, row n = 7 counts the following partitions:
(61) (52) (43) (331) (322) (511) (7)
(4111) (2221) (22111) (421)
(3211) (1111111) (31111)
(211111)
Row n = 9 counts the following partitions:
81 72 63 54 441 333 522 711 9
6111 4221 3222 22221 432 621
5211 3321 33111 531 51111
411111 4311 2211111 32211
222111 111111111 42111
321111 3111111
21111111
MATHEMATICA
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]], {i, Length[y]}];
Table[Length[Select[IntegerPartitions[n], sats[#]==k&]], {n, 0, 15}, {k, -n, n, 2}]
PROG
(PARI) row(n)={my(v=vector(n+1)); forpart(p=n, my(s=-sum(i=1, #p, p[i]*(-1)^i)); v[(s+n)/2+1]++); v} \\ Andrew Howroyd, Jan 06 2024
CROSSREFS
Row sums are A000041.
The midline k = n/2 is also A000041.
The right half (i.e., k >= 0) for even n is A344610.
The rows appear to converge to A344611 (from left) and A006330 (from right).
The non-reversed version is A344651 (A239830 interleaved with A239829).
The strict version is A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344618 gives reverse-alternating sums of standard compositions.
Sequence in context: A054078 A029400 A370173 * A069713 A319453 A072233
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jun 01 2021
STATUS
approved