The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A344612 Triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-alternating sum k ranging from -n to n in steps of 2. 105
 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 3, 3, 1, 1, 0, 1, 2, 4, 3, 3, 1, 1, 0, 1, 2, 4, 5, 5, 3, 1, 1, 0, 1, 2, 4, 7, 5, 6, 3, 1, 1, 0, 1, 2, 4, 8, 7, 9, 6, 3, 1, 1, 0, 1, 2, 4, 8, 12, 7, 11, 6, 3, 1, 1, 0, 1, 2, 4, 8, 14, 11, 14, 12, 6, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is also (-1)^(k-1) times the sum of the even-indexed parts minus the sum of the odd-indexed parts. Also the number of reversed integer partitions of n with alternating sum k ranging from -n to n in steps of 2. Also the number of integer partitions of n with (-1)^(m-1) * b = k where m is the greatest part and b is the number of odd parts, with k ranging from -n to n in steps of 2. LINKS EXAMPLE Triangle begins:                                 1                               0   1                             0   1   1                           0   1   1   1                         0   1   2   1   1                       0   1   2   2   1   1                     0   1   2   3   3   1   1                   0   1   2   4   3   3   1   1                 0   1   2   4   5   5   3   1   1               0   1   2   4   7   5   6   3   1   1             0   1   2   4   8   7   9   6   3   1   1           0   1   2   4   8  12   7  11   6   3   1   1         0   1   2   4   8  14  11  14  12   6   3   1   1       0   1   2   4   8  15  19  11  18  12   6   3   1   1     0   1   2   4   8  15  24  15  23  20  12   6   3   1   1   0   1   2   4   8  15  26  30  15  31  21  12   6   3   1   1 For example, row n = 7 counts the following partitions:   (61)  (52)    (43)      (331)      (322)    (511)  (7)         (4111)  (2221)    (22111)    (421)                 (3211)    (1111111)  (31111)                 (211111) Row n = 9 counts the following partitions:   81  72    63      54        441        333      522    711  9       6111  4221    3222      22221      432      621             5211    3321      33111      531      51111             411111  4311      2211111    32211                     222111    111111111  42111                     321111               3111111                     21111111 MATHEMATICA sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]], {i, Length[y]}]; Table[Length[Select[IntegerPartitions[n], sats[#]==k&]], {n, 0, 15}, {k, -n, n, 2}] CROSSREFS Row sums are A000041. The midline k = n/2 is also A000041. The right half (i.e., k >= 0) for even n is A344610. The rows appear to converge to A344611 (from left) and A006330 (from right). The non-reversed version is A344651 (A239830 interleaved with A239829). The strict version is A344739. A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. A103919 counts partitions by sum and alternating sum (reverse: A344612). A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741). A316524 is the alternating sum of the prime indices of n (reverse: A344616). A325534/A325535 count separable/inseparable partitions. A344618 gives reverse-alternating sums of standard compositions. Cf. A000070, A000097, A003242, A027187, A124754, A152146, A344607, A344608, A344649, A344650, A344654. Sequence in context: A301343 A054078 A029400 * A069713 A319453 A072233 Adjacent sequences:  A344609 A344610 A344611 * A344613 A344614 A344615 KEYWORD nonn AUTHOR Gus Wiseman, Jun 01 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 08:40 EST 2022. Contains 350475 sequences. (Running on oeis4.)