OFFSET
0,3
COMMENTS
The first four terms a(0), a(1), a(2), a(3) agree with sequence A000219 for unrestricted planar partitions, since the restriction does not rule anything out. For a(4) there is just one planar partition which doesn't satisfy the restriction, four 1's arranged in a square. So A000219 has fifth term 13 and here we have 12.
Number of unimodal compositions of n+1 where the maximal part appears once, see example. [Joerg Arndt, Jun 11 2013]
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see page 77.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
G. E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573. See (5.6).
F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
Shouvik Datta, M. R. Gaberdiel, W. Li, C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295.
G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
G. Kreweras, Letter to N. J. A. Sloane
FORMULA
G.f.: 1+Sum_{k>0} x^k/(Product_{i=1..k} (1-x^i))^2.
G.f.: (Sum_{k>=0} (-1)^k * x^(k(k+1)/2)) / (Product_{k>0} 1 - x^k)^2. - Michael Somos, Jul 28 2003
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(3/4) * n^(5/4)) [Auluck, 1951]. - Vaclav Kotesovec, Jun 22 2015
EXAMPLE
From Joerg Arndt, Jun 11 2013: (Start)
There are a(4)=12 unimodal compositions of 4+1=5 where the maximal part appears once:
01: [ 1 1 1 2 ]
02: [ 1 1 2 1 ]
03: [ 1 1 3 ]
04: [ 1 2 1 1 ]
05: [ 1 3 1 ]
06: [ 1 4 ]
07: [ 2 1 1 1 ]
08: [ 2 3 ]
09: [ 3 1 1 ]
10: [ 3 2 ]
11: [ 4 1 ]
12: [ 5 ]
(End)
G.f. = 1 + x + 3*x^2 + 6*x^3 + 12*x^4 + 21*x^5 + 38*x^6 + 63*x^7 + 106*x^8 + ...
MATHEMATICA
a[0] = 1; a[n_] := SeriesCoefficient[ Sum[x^k/Product[1 - x^i, {i, 1, k}]^2, {k, 1, n}] + 1, {x, 0, n}]; Array[a, 39, 0] (* Jean-François Alcover, Mar 13 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / prod(i=1, k, 1 - x^i, 1 + x*O(x^n))^2, 1), n))};
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) - 1)\2, (-1)^k * x^((k + k^2)/2)) / eta(x + x*O(x^n))^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and extended by Moshe Shmuel Newman, Jun 10 2003
STATUS
approved