login
A006328
Total preorders.
(Formerly M3928)
2
5, 24, 79, 223, 579, 1432, 3434, 8071, 18714, 42991, 98127, 222965, 505008, 1141236, 2574845, 5802636, 13065935, 29403439, 66141015, 148734156, 334391354, 751675943, 1689494650, 3797059555, 8533209055, 19176039925, 43091557504, 96831330948, 217586892705
OFFSET
3,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
FORMULA
From Colin Barker, Mar 19 2017: (Start)
G.f.: x^3*(1 + x)*(5 - x - x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2 + x^3)).
a(n) = 4*a(n-1) - 3*a(n-2) - 4*a(n-3) + 4*a(n-4) + a(n-5) - a(n-6) for n>8.
(End)
MATHEMATICA
CoefficientList[ Series[(5 + 4x - 2x^2 - x^3)/(1 - 4x + 3x^2 + 4x^3 - 4 x^4 - x^5 + x^6), {x, 0, 30}], x] (* Robert G. Wilson v, Mar 12 2017 *)
PROG
(PARI) Vec(x^3*(1 + x)*(5 - x - x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2 + x^3)) + O(x^40)) \\ Colin Barker, Mar 19 2017
CROSSREFS
A column of A079502.
Sequence in context: A205669 A101147 A274723 * A213766 A000347 A270906
KEYWORD
nonn,easy
EXTENSIONS
More terms from Sean A. Irvine, Mar 12 2017
STATUS
approved