login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total preorders.
(Formerly M3928)
2

%I M3928 #21 Nov 07 2017 18:15:42

%S 5,24,79,223,579,1432,3434,8071,18714,42991,98127,222965,505008,

%T 1141236,2574845,5802636,13065935,29403439,66141015,148734156,

%U 334391354,751675943,1689494650,3797059555,8533209055,19176039925,43091557504,96831330948,217586892705

%N Total preorders.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Colin Barker, <a href="/A006328/b006328.txt">Table of n, a(n) for n = 3..1000</a>

%H G. Kreweras, <a href="http://www.numdam.org/item?id=MSH_1976__53__5_0">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30.

%H G. Kreweras, <a href="/A019538/a019538.pdf">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-4,4,1,-1).

%F From _Colin Barker_, Mar 19 2017: (Start)

%F G.f.: x^3*(1 + x)*(5 - x - x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2 + x^3)).

%F a(n) = 4*a(n-1) - 3*a(n-2) - 4*a(n-3) + 4*a(n-4) + a(n-5) - a(n-6) for n>8.

%F (End)

%t CoefficientList[ Series[(5 + 4x - 2x^2 - x^3)/(1 - 4x + 3x^2 + 4x^3 - 4 x^4 - x^5 + x^6), {x, 0, 30}], x] (* _Robert G. Wilson v_, Mar 12 2017 *)

%o (PARI) Vec(x^3*(1 + x)*(5 - x - x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2 + x^3)) + O(x^40)) \\ _Colin Barker_, Mar 19 2017

%Y A column of A079502.

%K nonn,easy

%O 3,1

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Mar 12 2017