login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006331 a(n) = n*(n+1)*(2*n+1)/3.
(Formerly M1963)
47
0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Triangles in rhombic matchstick arrangement of side n.
Maximum accumulated number of electrons at energy level n. - Scott A. Brown, Feb 28 2000
Let M_n denote the n X n matrix M_n(i,j)=i^2+j^2; then the characteristic polynomial of M_n is x^n - a(n)x^(n-1) - .... - Michael Somos, Nov 14 2002
Convolution of odds (A005408) and evens (A005843). - Graeme McRae, Jun 06 2006
a(n) is the number of non-monotonic functions with domain {0,1,2} and codomain {0,1,...,n}. - Dennis P. Walsh, Apr 25 2011
For any odd number 2n+1, find Sum_{a<b, a+b=2n+1} a*b. This sum is equal to the n-th nonzero term of this sequence. Thus for 13=2*n+1, n=6; there are six products, 1*12 + 2*11 + 3*10 + 4*9 + 5*8 + 6*7 = 182, which is also twice the sum of the squares for n=6. - J. M. Bergot, Jul 16 2011
a(n) gives the number of (n+1) X (n+1) symmetric (0,1)-matrices containing three ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and |w - x| < y. - Clark Kimberling, Jun 02 2012
Partial sums of A001105. - Omar E. Pol, Jan 12 2013
Total number of square diagonals (of any size) in an n X n square grid. - Wesley Ivan Hurt, Mar 24 2015
Number of diagonal attacks of two queens on (n+1) X (n+1) chessboard. - Antal Pinter, Sep 20 2015
a(n) is the minimum value obtainable by partitioning either the set {x in the natural numbers | 1 <= x <= 2n} or the set {x in the natural numbers | 0 <= x <= 2n+1} into pairs, taking the product of all such pairs, and taking the sum of all such products. - Thomas Anton, Oct 21 2020
a(n) is the irregularity of the n-th power of a path of length at least 3*n. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 16 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359.
J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
Rowan Beckworth, Basic atomic information.
Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 25.
N. S. S. Gu, H. Prodinger and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat., Vol. 31 (2010), pp. 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2 at n=3.
Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle}, Institut de Statistique, Université de Paris, Vol. 6 (1965), circa p. 82.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: 2*x*(1 + x)/(1 - x)^4. - Simon Plouffe (in his 1992 dissertation)
a(n) = 2*binomial(n+1,3) + 2*binomial(n+2,3).
a(n) = 2*A000330(n) = A002492(n)/2.
a(n) = Sum_{i=0..n} T(i,n-i), array T as in A048147. - N. J. A. Sloane, Dec 11 1999
From the formula for the sum of squares of positive integers 1^2 + 2^2 + 3^2 + ... + n^2 = n*(n+1)(2*n+1)/6, if we multiply both sides by 2 we get Sum_{k=0..n} 2*k^2 = n*(n+1)*(2*n+1)/3, which is an alternative formula for this sequence. - Mike Warburton, Sep 08 2007
10*a(n) = A016755(n) - A001845(n); since A016755 are odd cubes and A001845 centered octahedral numbers, 10*a(n) are the "odd cubes without their octahedral contents." - Damien Pras, Mar 19 2011
a(n) = sum(a*b), where the summing is over all unordered partitions 2*n+1=a+b. - Vladimir Shevelev, May 11 2012
a(n) = binomial(2*n+2, 3)/2. - Ronan Flatley, Dec 13 2012
a(n) = A000292(n) + A002411(n). - Omar E. Pol, Jan 11 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3, with a(0)=0, a(1)=2, a(2)=10, a(3)=28. - Harvey P. Dale, Apr 12 2013
a(n) = A208532(n+1,2). - Philippe Deléham, Dec 05 2013
Sum_{n>0} 1/a(n) = 9 - 12*log(2). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A000292(n-1) + (n+1)*A000217(n). - J. M. Bergot, Sep 02 2015
a(n) = 2*(A000332(n+3) - A000332(n+1)). - Antal Pinter, Sep 20 2015
From Bruno Berselli, May 17 2018: (Start)
a(n) = n*A002378(n) - Sum_{k=0..n-1} A002378(k) for n>0, a(0)=0. Also:
A163102(n) = n*a(n) - Sum_{k=0..n-1} a(k) for n>0, A163102(0)=0. (End)
a(n) = A005900(n) - A000290(n) = A096000(n) - A000578(n+1) = A000578(n+1) - A084980(n+1) = A000578(n+1) - A077415(n)-1 = A112524(n) + 1 = A188475(n) - 1 = A061317(n) - A100178(n) = A035597(n+1) - A006331(n+1). - Bruce J. Nicholson, Jun 24 2018
E.g.f.: (1/3)*exp(x)*x*(6 + 9*x + 2*x^2). - Stefano Spezia, Jan 05 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi - 9. - Amiram Eldar, Jan 04 2022
EXAMPLE
For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - Dennis P. Walsh, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - Vladimir Shevelev, May 11 2012
MAPLE
A006331 := proc(n)
n*(n+1)*(2*n+1)/3 ;
end proc:
seq(A006331(n), n=0..80) ; # R. J. Mathar, Sep 27 2013
MATHEMATICA
Table[n(n+1)(2n+1)/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 2, 10, 28}, 50] (* Harvey P. Dale, Apr 12 2013 *)
PROG
(PARI) a(n)=if(n<0, 0, n*(n+1)*(2*n+1)/3)
(Magma) [n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
(Haskell)
a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
-- Reinhard Zumkeller, Feb 11 2012
CROSSREFS
A row of A132339.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).
Sequence in context: A060515 A109723 A053594 * A252591 A296849 A296380
KEYWORD
nonn,easy,nice,changed
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 21:03 EST 2024. Contains 370378 sequences. (Running on oeis4.)