The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096000 Cupolar numbers: a(n) = (n+1)*(5*n^2+7*n+3)/3. 7
 1, 10, 37, 92, 185, 326, 525, 792, 1137, 1570, 2101, 2740, 3497, 4382, 5405, 6576, 7905, 9402, 11077, 12940, 15001, 17270, 19757, 22472, 25425, 28626, 32085, 35812, 39817, 44110, 48701, 53600, 58817, 64362, 70245, 76476, 83065, 90022, 97357, 105080, 113201, 121730 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of equal balls that will fill a triangular cupola, formed by splitting a cuboctahedron along one of its four "equilateral" hexagons. Also as a(n)=(1/6)*(10*n^3-6*n^2+10*n), n>0: structured pentagonal anti-prism numbers (Cf. A100185 = structured anti-prisms); and structured tetragonal anti-diamond numbers (vertex structure 7) (Cf. A000447 = alternate vertex; A100188 = structured anti-diamonds). Cf. A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004 REFERENCES H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = (1/2)*(Q(n) + 3n^2 + 3n + 1), where Q(n) are the cuboctahedral numbers, A005902. G.f.: (1+6*x+3*x^2)/(1-x)^4. - Paul Barry, Oct 28 2006 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), n>4. - Wesley Ivan Hurt, May 23 2015 MAPLE A096000:=n->(n+1)*(5*n^2+7*n+3)/3; seq(A096000(n), n=0..50); # Wesley Ivan Hurt, Mar 11 2014 MATHEMATICA Table[(n + 1)(5n^2 + 7n + 3)/3, {n, 0, 50}] (* Wesley Ivan Hurt, Mar 11 2014 *) CoefficientList[Series[(1 + 6 x + 3 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 23 2015 *) PROG (PARI) a(n) = (1/3)*(n+1)*(5*n^2+7*n+3) \\ Michel Marcus, Jul 11 2013 (MAGMA) [(n+1)*(5*n^2+7*n+3)/3 : n in [0..50]]; // Wesley Ivan Hurt, May 23 2015 CROSSREFS Cf. A005902. Sequence in context: A212795 A227695 A247792 * A047672 A200872 A212755 Adjacent sequences:  A095997 A095998 A095999 * A096001 A096002 A096003 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, in memory of Harold Scott MacDonald Coxeter [Feb 09 1907 - Mar 31 2003], May 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 05:38 EDT 2020. Contains 337911 sequences. (Running on oeis4.)