The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227695 Expansion of psi(x)^2 * phi(-x)^6 in powers of x where phi(), psi() are Ramanujan theta functions. 4
1, -10, 37, -50, -30, 128, -25, -34, -320, 310, 410, -370, -87, -410, 320, 30, 500, 384, -630, -640, -359, 300, -326, 2560, -110, -1098, -1280, -370, 1490, -1850, 269, 1500, 1216, 640, 570, -3328, 340, -2010, -1110, 1790, 768, 3200, 303, 750, -1600, -442 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/4) * (eta(q)^5 / eta(q^2))^2 in powers of q.
Expansion of phi(-x)^5 * f(-x^2)^3 = phi(-x)^2 * f(-x)^6 in powers of x where phi(), f() are Ramanujan theta functions.
Euler transform of period 2 sequence [ -10, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 8192 (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227317.
G.f.: (Product_{k>0} (1 - x^k)^5 / (1 - x^(2*k)))^2.
Convolution of A000729 and A104794.
EXAMPLE
G.f. = 1 - 10*x + 37*x^2 - 50*x^3 - 30*x^4 + 128*x^5 - 25*x^6 - 34*x^7 - 320*x^8 + ...
G.f. = q - 10*q^5 + 37*q^9 - 50*q^13 - 30*q^17 + 128*q^21 - 25*q^25 - 34*q^29 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^5 / QPochhammer[ x^2])^2, {x, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^5 / eta(x^2 + A))^2, n))};
CROSSREFS
Sequence in context: A139242 A139236 A212795 * A247792 A372373 A096000
KEYWORD
sign
AUTHOR
Michael Somos, Sep 02 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 09:39 EDT 2024. Contains 372851 sequences. (Running on oeis4.)