The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104794 Expansion of theta_4(q)^2 in powers of q. 14
 1, -4, 4, 0, 4, -8, 0, 0, 4, -4, 8, 0, 0, -8, 0, 0, 4, -8, 4, 0, 8, 0, 0, 0, 0, -12, 8, 0, 0, -8, 0, 0, 4, 0, 8, 0, 4, -8, 0, 0, 8, -8, 0, 0, 0, -8, 0, 0, 0, -4, 12, 0, 8, -8, 0, 0, 0, 0, 8, 0, 0, -8, 0, 0, 4, -16, 0, 0, 8, 0, 0, 0, 4, -8, 8, 0, 0, 0, 0, 0, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Quadratic AGM theta functions: a(q) (see A004018), b(q) (A104794), c(q) (A005883). In the Arithmetic-Geometric Mean, if a = theta_3(q)^2, b = theta_4(q)^2 then a' := (a+b)/2 = theta_3(q^2)^2, b' := sqrt(a*b) = theta_4(q^2)^2. REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 576. J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of phi(-q)^2 = 2 * phi(q^2)^2 - phi(q)^2 = (phi(q) - 2*phi(q^4))^2 = f(-q)^3 / psi(q) = phi(-q^2)^4 / phi(q)^2 = psi(-q)^4 / psi(q^2)^2 = psi(q)^2 * chi(-q)^6 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. Expansion of (1-k^2)^(1/2) K(k^2) / (Pi/2) in powers of q where q is Jacobi's nome, k is the elliptic modulus and K() is the complete elliptic integral of the first kind. Expansion of  K(k^2) / (Pi/2) in powers of -q where q is Jacobi's nome, k is the elliptic modulus and K() is the complete elliptic integral of the first kind. - Michael Somos, Jun 08 2015 Expansion of eta(q)^4 / eta(q^2)^2 in powers of q. Euler transform of period 2 sequence [ -4, -2, ...]. G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u^2 + v^2) - 2*u*w^2. G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 - 2*u1*u3 + 4*u2*u6 - 3*u3^2. Moebius transform is period 8 sequence [ -4, 8, 4, 0, -4, -8, 4, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 16 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A008441. G.f.: theta_4(q)^2 = (Sum_{k in Z} (-q)^(k^2))^2 = (Product_{k>0} (1 - q^(2*k)) * (1 - q^(2*k - 1))^2)^2. G.f.: 1 + 4 * Sum_{k>0} (-x)^k / (1 + x^(2*k)). - Michael Somos, Jun 08 2015 a(4*n + 3) = 0. a(n) = (-1)^n * A004018(n) = a(2*n). a(4*n + 1) = -4 * A008441(n). a(n) = -4 * A113652(n) unless n=0. a(6*n + 2) = 4 * A122865(n)). a(6*n + 4) = 4 * A122856(n). a(8*n + 1) = -4 * A113407(n). a(8*n + 5) = -8 * A053692(n). a(n) = a(9*n) = A204531(8*n) = A246950(8*n) = A256014(9*n) = A258210(n). - Michael Somos, Jun 08 2015 Convolution inverse of A001934. Convolution with A000729 is A227695. - Michael Somos, Jun 08 2015 G.f.: 2 * Sum_{k in Z} (-1)^k * x^(k*(k + 1)/2) / (1 + x^k). - Michael Somos, Nov 05 2015 a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017 G.f.: exp(2*Sum_{k>=1} (sigma(k) - sigma(2*k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018 EXAMPLE G.f. = 1 - 4*q + 4*q^2 + 4*q^4 - 8*q^5 + 4*q^8 - 4*q^9 + 8*q^10 - 8*q^13 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2, {q, 0, n}]; a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[1 - m] EllipticK[m] / (Pi/2), {q, 0, n}]]; a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(1/4) EllipticK[m] / (Pi/2), {q, 0, 2 n}]]; a[ n_] := With[ {m = InverseEllipticNomeQ @ -q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 06 2015 *) a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 4 DivisorSum[ n, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jun 06 2015 *) PROG (PARI) {a(n) = if( n<1, n==0, (-1)^n * 4 * sumdiv(n, d, (d%4==1) - (d%4==3)))}; (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 / eta(x^2 + A)^2, n ))}; (PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 4 * sum( k=1, n, (-x)^k / (1 + x^(2*k)), x * O(x^n)), n))}; (MAGMA) A := Basis( ModularForms( Gamma1(8), 1), 100); A[1] - 4*A[2] + 4*A[3]; /* Michael Somos, Jan 31 2015 */ (Julia) # JacobiTheta4 is defined in A002448. A104794List(len) = JacobiTheta4(len, 2) A104794List(102) |> println # Peter Luschny, Mar 12 2018 CROSSREFS Cf. A000203, A000729, A001934, A002131, A004018, A008441, A053692, A113407, A113652, A122856, A122865, A204531, A227695, A246950, A256014, A258210. Sequence in context: A245971 A279365 A164613 * A004018 A253185 A028658 Adjacent sequences:  A104791 A104792 A104793 * A104795 A104796 A104797 KEYWORD sign AUTHOR Michael Somos, Mar 26 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 08:09 EDT 2021. Contains 342845 sequences. (Running on oeis4.)