login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164613
Expansion of (phi(q) / phi(q^9))^2 in powers of q where phi() is a Ramanujan theta function.
2
1, 4, 4, 0, 4, 8, 0, 0, 4, 0, -8, -16, 0, -8, -32, 0, 4, -8, 0, 16, 56, 0, 16, 96, 0, -4, 24, 0, -32, -152, 0, -32, -252, 0, 8, -64, 0, 56, 368, 0, 56, 600, 0, -16, 144, 0, -96, -832, 0, -92, -1316, 0, 24, -312, 0, 160, 1760, 0, 152, 2736, 0, -40, 640, 0, -252, -3536, 0, -240, -5432, 0, 64, -1248, 0, 392
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^2)^5 * eta(q^9)^2 * eta(q^36)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^18)^5))^2 in powers of q.
Euler transform of period 36 sequence [ 4, -6, 4, -2, 4, -6, 4, -2, 0, -6, 4, -2, 4, -6, 4, -2, 4, 0, 4, -2, 4, -6, 4, -2, 4, -6, 0, -2, 4, -6, 4, -2, 4, -6, 4, 0, ...].
a(3*n) = 0 unless n=0. a(3*n + 1) = 4 * A128111(n). a(3*n + 2) = 4 * A164614(n).
Convolution square of A139380.
EXAMPLE
G.f. = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 - 8*q^10 - 16*q^11 - 8*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^9])^2, {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^9 + A)^2 * eta(x^36 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^18 + A)^5))^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 17 2009
STATUS
approved