login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279365 Expansion of phi(-x)^2 / chi(-x^5) in powers of x where psi(), chi() are Ramanujan theta functions. 1
1, -4, 4, 0, 4, -7, -4, 4, 4, 0, 1, -4, 4, -4, 0, 2, -4, 0, 0, 4, 2, -4, 0, 4, 0, -1, 0, 4, -4, -4, -8, 0, 4, 4, 4, 1, 0, 0, 0, 4, -2, 0, -4, 0, -4, 0, -4, 0, 0, 4, 2, 4, 0, -4, -4, 8, 0, 4, 0, -4, -1, 0, -4, 0, 0, 2, 0, -4, 4, 0, -2, 4, -4, 0, 0, -1, 0, 0, -4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-5/24) * eta(q)^4 * eta(q^10) / (eta(q^2)^2 * eta(q^5)) in powers of q.

Euler transform of period 10 sequence [ -4, -2, -4, -2, -3, -2, -4, -2, -4, -2, ...].

EXAMPLE

G.f. = 1 - 4*x + 4*x^2 + 4*x^4 - 7*x^5 - 4*x^6 + 4*x^7 + 4*x^8 + ...

G.f. = q^5 - 4*q^29 + 4*q^53 + 4*q^101 - 7*q^125 - 4*q^149 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^2 / QPochhammer[ x^5, x^10], {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^10 + A) / (eta(x^2 + A)^2 * eta(x^5 + A)), n))};

(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q)^4*eta(q^10)/(eta(q^2)^2*eta(q^5)))} \\ Altug Alkan, Mar 21 2018

CROSSREFS

Sequence in context: A290799 A155836 A245971 * A164613 A104794 A004018

Adjacent sequences:  A279362 A279363 A279364 * A279366 A279367 A279368

KEYWORD

sign

AUTHOR

Michael Somos, Dec 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 03:05 EDT 2018. Contains 315155 sequences. (Running on oeis4.)