

A245971


Tower of 4s mod n.


9



0, 0, 1, 0, 1, 4, 4, 0, 4, 6, 4, 4, 9, 4, 1, 0, 1, 4, 9, 16, 4, 4, 3, 16, 21, 22, 13, 4, 24, 16, 4, 0, 4, 18, 11, 4, 34, 28, 22, 16, 37, 4, 41, 4, 31, 26, 17, 16, 11, 46, 1, 48, 47, 40, 26, 32, 28, 24, 45, 16, 57, 4, 4, 0, 61, 4, 55, 52, 49, 46, 50, 40, 37
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

a(n) = (4^(4^(4^(4^(4^ ... ))))) mod n, provided sufficient 4s are in the tower such that adding more doesn't affect the value of a(n).


LINKS

Wayne VanWeerthuizen, Table of n, a(n) for n = 1..10000


PROG

(Sage)
def tower4mod(n):
if n <= 10:
return 256%n
else:
ep = euler_phi(n)
return power_mod(4, ep+tower4mod(ep), n)
[tower4mod(n) for n in range(1, 30)]
(Haskell)
import Math.NumberTheory.Moduli (powerMod)
a245971 n = powerMod 4 (phi + a245971 phi) n
where phi = a000010 n
 Reinhard Zumkeller, Feb 01 2015


CROSSREFS

Cf. A240162, A245970, A245972, A245973, A245974.
Cf. A000010, A000302.
Sequence in context: A290799 A155836 A337398 * A279365 A164613 A104794
Adjacent sequences: A245968 A245969 A245970 * A245972 A245973 A245974


KEYWORD

nonn,easy


AUTHOR

Wayne VanWeerthuizen, Aug 08 2014


STATUS

approved



