login
A245968
The edge independence number of the Lucas cube Lambda(n).
2
0, 0, 1, 1, 3, 5, 8, 14, 23, 37, 61, 99, 160, 260, 421, 681, 1103, 1785, 2888, 4674, 7563, 12237, 19801, 32039, 51840, 83880, 135721, 219601, 355323, 574925, 930248, 1505174, 2435423, 3940597, 6376021, 10316619, 16692640, 27009260, 43701901, 70711161, 114413063
OFFSET
0,5
COMMENTS
The Lucas cube Lambda(n) can be defined as the graph whose vertices are the binary strings of length n without either two consecutive 1's or a 1 in the first and in the last position, and in which two vertices are adjacent when their Hamming distance is exactly 1.
LINKS
E. Munarini, C. P. Cippo, and N. Z. Salvi, On the Lucas cubes, The Fibonacci Quarterly, 39, No. 1, 2001, 12-21.
Eric Weisstein's World of Mathematics, Lucas Cube Graph
Eric Weisstein's World of Mathematics, Matching Number
FORMULA
a(n) = floor((L(n)-1)/2), where L(n) = A000032(n) are the Lucas numbers (L(0)=2, L(1)=1, L(n)=L(n-1)+L(n-2) for n>=2).
G.f.: x^2*(x^2+1) / ((x-1)*(x^2+x-1)*(x^2+x+1)). - Colin Barker, Aug 31 2014
a(n) = a(n-1)+a(n-2)+a(n-3)-a(n-4)-a(n-5). - Colin Barker, Aug 31 2014
EXAMPLE
a(3)=1 because Lambda(3) is the star tree on four vertices, having, obviously, vertex independence number equal to 1.
MAPLE
with(combinat): a := proc (n) options operator, arrow: floor((1/2)*fibonacci(n+1)+(1/2)*fibonacci(n-1)-1/2) end proc: seq(a(n), n = 0 .. 40);
MATHEMATICA
CoefficientList[Series[x^2 (x^2 + 1)/((x - 1) (x^2 + x - 1) (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 31 2014 *)
Floor[(LucasL[Range[20]] - 1)/2] (* Eric W. Weisstein, Aug 01 2023 *)
LinearRecurrence[{1, 1, 1, -1, -1}, {0, 1, 1, 3, 5, 8}, 20] (* Eric W. Weisstein, Aug 01 2023 *)
Table[LucasL[n]/2 - (Cos[2 n Pi/3] + 2)/3, {n, 20}] (* Eric W. Weisstein, Aug 01 2023 *)
PROG
(PARI) concat([0, 0], Vec(x^2*(x^2+1)/((x-1)*(x^2+x-1)*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Aug 31 2014
(Magma) [Floor((Lucas(n)-1)/2):n in [0..50]]; // Vincenzo Librandi, Aug 31 2014
CROSSREFS
Cf. A000032.
Sequence in context: A159914 A153251 A229167 * A109022 A023596 A208667
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 16 2014
STATUS
approved