login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153251
Coefficients of the sixth-order mock theta function phi_{-}(q).
3
0, 1, 3, 5, 8, 14, 22, 33, 51, 74, 105, 151, 210, 289, 398, 537, 719, 960, 1267, 1660, 2167, 2807, 3614, 4638, 5915, 7507, 9498, 11957, 14994, 18744, 23337, 28959, 35834, 44192, 54338, 66643, 81499, 99407, 120969, 146836, 177820
OFFSET
0,3
LINKS
B.C. Berndt and S.H. Chan, Sixth order mock theta functions, Adv. Math. 216 (2007), 771-786.
FORMULA
G.f.: Sum_{n >= 1} q^n (1+q)(1+q^2)...(1+q^(2n-1))/((1-q)(1-q^3)...(1-q^(2n-1))).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*sqrt(3*n)). - Vaclav Kotesovec, Jun 13 2019
PROG
(PARI) lista(nn) = q = qq + O(qq^nn); gf = sum(n = 1, nn, q^n * prod(k = 1, 2*n-1, 1 + q^k) / prod(k = 1, n, 1 - q^(2*k-1))); concat(0, Vec(gf)) \\ Michel Marcus, Jun 18 2013
CROSSREFS
Cf. A153252.
Other '6th-order' mock theta functions are at A053268, A053269, A053270, A053271, A053272, A053273, A053274.
Sequence in context: A141739 A094007 A159914 * A229167 A245968 A109022
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Dec 21 2008
STATUS
approved