login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053272
Coefficients of the '6th-order' mock theta function lambda(q).
9
1, -1, 3, -5, 6, -7, 11, -16, 18, -21, 30, -40, 47, -56, 72, -92, 108, -125, 156, -193, 225, -263, 318, -383, 444, -513, 612, -724, 834, -963, 1129, -1320, 1512, -1730, 2010, -2325, 2652, -3022, 3474, -3988, 4524, -5129, 5857, -6673, 7542, -8515, 9660, -10943, 12312, -13842
OFFSET
0,3
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 13
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 (corrected previous b-file from G. C. Greubel)
George E. Andrews and Dean Hickerson, Ramanujan's "lost" notebook VII: The sixth order mock theta functions, Advances in Mathematics, 89 (1991) 60-105.
FORMULA
G.f.: lambda(q) = Sum_{n >= 0} (-q)^n (1-q)(1-q^3)...(1-q^(2n-1))/((1+q)(1+q^2)...(1+q^n)).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/3)) / (2*sqrt(3*n)). - Vaclav Kotesovec, Jun 15 2019
MATHEMATICA
Series[Sum[(-q)^n Product[1-q^k, {k, 1, 2n-1, 2}]/Product[1+q^k, {k, 1, n}], {n, 0, 100}], {q, 0, 100}]
nmax = 100; CoefficientList[Series[Sum[(-x)^k * Product[1-x^j, {j, 1, 2*k-1, 2}] / Product[1+x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 15 2019 *)
CROSSREFS
Other '6th-order' mock theta functions are at A053268, A053269, A053270, A053271, A053273, A053274.
Sequence in context: A015814 A227026 A361827 * A326929 A138927 A030333
KEYWORD
sign,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved