OFFSET
0,3
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 2, 4, 6, 13, 16, 17
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (corrected and extended previous b-file from G. C. Greubel)
George E. Andrews and Dean Hickerson, Ramanujan's "lost" notebook VII: The sixth order mock theta functions, Advances in Mathematics, 89 (1991) 60-105.
FORMULA
G.f.: phi(q) = sum for n >= 0 of (-1)^n q^n^2 (1-q)(1-q^3)...(1-q^(2n-1))/((1+q)(1+q^2)...(1+q^(2n))).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/6)) / (2*sqrt(3*n)). - Vaclav Kotesovec, Jun 15 2019
MATHEMATICA
Series[Sum[(-1)^n q^n^2 Product[1-q^k, {k, 1, 2n-1, 2}]/Product[1+q^k, {k, 1, 2n}], {n, 0, 10}], {q, 0, 100}]
nmax = 100; CoefficientList[Series[Sum[(-1)^k * x^(k^2) * Product[1-x^j, {j, 1, 2*k-1, 2}] / Product[1+x^j, {j, 1, 2*k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 15 2019 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved