|
|
A101417
|
|
Number of partitions of n into parts without powers of 2.
|
|
17
|
|
|
1, 0, 0, 1, 0, 1, 2, 1, 1, 3, 3, 3, 6, 5, 6, 10, 9, 12, 17, 17, 22, 28, 30, 37, 48, 52, 62, 78, 86, 103, 127, 141, 166, 201, 227, 266, 317, 358, 417, 492, 560, 647, 757, 860, 991, 1153, 1309, 1503, 1738, 1971, 2257, 2594, 2941, 3356, 3843, 4351, 4948, 5644, 6382, 7240
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Product_{j>=1} (1-x^(2^j)) / Product_{i>=2} (1-x^i). - Emeric Deutsch, Mar 29 2006
|
|
EXAMPLE
|
a(12) = #{3+3+3+3, 6+3+3, 6+6, 7+5, 9+3, 12} = 6.
The a(3) = 1 through a(14) = 5 integer partitions (A = 10, ..., E = 14):
(3) (5) (6) (7) (53) (9) (A) (B) (C) (D) (E)
(33) (63) (55) (65) (66) (76) (77)
(333) (73) (533) (75) (A3) (95)
(93) (553) (B3)
(633) (733) (653)
(3333) (5333)
(End)
|
|
MAPLE
|
g:= product(1-x^(2^j), j=0..15)/product(1-x^i, i=1..75): gser:= series(g, x=0, 62): seq(coeff(gser, x, n), n=0..59); # Emeric Deutsch, Mar 29 2006
|
|
MATHEMATICA
|
Table[Length[Select[IntegerPartitions[n], And@@Not/@IntegerQ/@Log[2, #]&]], {n, 20}] (* Gus Wiseman, Jan 07 2019 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|