login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102430
Triangle read by rows where T(n,k) is the number of integer partitions of n > 1 into powers of k > 1.
12
2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 6, 3, 2, 2, 2, 6, 3, 2, 2, 2, 2, 10, 3, 3, 2, 2, 2, 2, 10, 5, 3, 2, 2, 2, 2, 2, 14, 5, 3, 3, 2, 2, 2, 2, 2, 14, 5, 3, 3, 2, 2, 2, 2, 2, 2, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 26, 7, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2
OFFSET
2,1
COMMENTS
All entries above main diagonal are = 1.
LINKS
FORMULA
T(1, k) = 1, T(n, 1) = choose(2n-1, n), T(n>1, k>1) = T(n-1, k) + (T(n/k, k) if k divides n, else 0)
EXAMPLE
The T(9,3)=5 partitions of 9 into powers of 3: 111111111, 1111113, 11133, 333, 9.
From Gus Wiseman, Jun 07 2019: (Start)
Triangle begins:
2
2 2
4 2 2
4 2 2 2
6 3 2 2 2
6 3 2 2 2 2
10 3 3 2 2 2 2
10 5 3 2 2 2 2 2
14 5 3 3 2 2 2 2 2
14 5 3 3 2 2 2 2 2 2
20 7 4 3 3 2 2 2 2 2 2
20 7 4 3 3 2 2 2 2 2 2 2
26 7 4 3 3 3 2 2 2 2 2 2 2
26 9 4 4 3 3 2 2 2 2 2 2 2 2
36 9 6 4 3 3 3 2 2 2 2 2 2 2 2
36 9 6 4 3 3 3 2 2 2 2 2 2 2 2 2
46 12 6 4 4 3 3 3 2 2 2 2 2 2 2 2 2
Row n = 8 counts the following partitions:
8 3311 44 5111 611 71 8
44 311111 41111 11111111 11111111 11111111 11111111
422 11111111 11111111
2222
4211
22211
41111
221111
2111111
11111111
(End)
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<0, 0,
b(n, i-1, k)+(p-> `if`(p>n, 0, b(n-p, i, k)))(k^i)))
end:
T:= (n, k)-> b(n, ilog[k](n), k):
seq(seq(T(n, k), k=2..n), n=2..20); # Alois P. Heinz, Oct 12 2019
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@(IntegerQ[Log[k, #]]&/@#)&]], {n, 2, 10}, {k, 2, n}] (* Gus Wiseman, Jun 07 2019 *)
CROSSREFS
Same as A308558 except for the k = 1 column.
Row sums are A102431.
First column (k = 2) is A018819.
Second column (k = 3) is A062051.
Sequence in context: A075016 A279409 A102445 * A160691 A367626 A049716
KEYWORD
easy,nonn,tabl
AUTHOR
Marc LeBrun, Jan 08 2005
EXTENSIONS
Corrected and rewritten by Gus Wiseman, Jun 07 2019
STATUS
approved