login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008650
Molien series of 4 X 4 upper triangular matrices over GF( 3 ).
3
1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 12, 12, 12, 15, 15, 15, 18, 18, 18, 23, 23, 23, 28, 28, 28, 33, 33, 33, 40, 40, 40, 47, 47, 47, 54, 54, 54, 63, 63, 63, 72, 72, 72, 81, 81, 81, 93, 93, 93, 105, 105
OFFSET
0,4
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 1, -1).
FORMULA
a(n) ~ 1/4374*n^3. - Ralf Stephan, Apr 29 2014
G.f.: 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)).
MAPLE
1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)): seq(coeff(series(%, x, n+1), x, n), n=0..70);
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)), {x, 0, 70}], x] (* G. C. Greubel, Sep 06 2019 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27))) \\ G. C. Greubel, Sep 06 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)) )); // G. C. Greubel, Sep 06 2019
(Sage)
def A008650_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27))).list()
A008650_list(70) # G. C. Greubel, Sep 06 2019
CROSSREFS
Sequence in context: A076973 A337931 A008649 * A062051 A179269 A108711
KEYWORD
nonn,easy
STATUS
approved