The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008649 Molien series of 3 X 3 upper triangular matrices over GF( 3 ). 3
 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 12, 12, 12, 15, 15, 15, 18, 18, 18, 22, 22, 22, 26, 26, 26, 30, 30, 30, 35, 35, 35, 40, 40, 40, 45, 45, 45, 51, 51, 51, 57, 57, 57, 63, 63, 63, 70, 70, 70, 77, 77, 77, 84, 84, 84, 92, 92, 92, 100, 100, 100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of partitions of n into parts 1, 3 or 9. - Reinhard Zumkeller, Aug 12 2011 REFERENCES D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 219 Index entries for Molien series Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, -1, 1). FORMULA G.f.: 1/((1-x)*(1-x^3)*(1-x^9)). a(n) = floor((6*(floor(n/3) +1)*(3*floor(n/3) -n +1) +n^2 +13*n +58)/54). - Tani Akinari, Jul 12 2013 MAPLE 1/((1-x)*(1-x^3)*(1-x^9)): seq(coeff(series(%, x, n+1), x, n), n=0..70); MATHEMATICA CoefficientList[Series[1/((1-x)*(1-x^3)*(1-x^9)), {x, 0, 70}], x] (* G. C. Greubel, Sep 06 2019 *) PROG (PARI) my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^9))) \\ G. C. Greubel, Sep 06 2019 (Magma) R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^9)) )); // G. C. Greubel, Sep 06 2019 (Sage) def A008649_list(prec): P. = PowerSeriesRing(ZZ, prec) return P(1/((1-x)*(1-x^3)*(1-x^9))).list() A008649_list(70) # G. C. Greubel, Sep 06 2019 CROSSREFS Sequence in context: A032562 A076973 A337931 * A008650 A062051 A179269 Adjacent sequences: A008646 A008647 A008648 * A008650 A008651 A008652 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 7 22:39 EDT 2023. Contains 363157 sequences. (Running on oeis4.)