login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008649
Molien series of 3 X 3 upper triangular matrices over GF( 3 ).
3
1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 12, 12, 12, 15, 15, 15, 18, 18, 18, 22, 22, 22, 26, 26, 26, 30, 30, 30, 35, 35, 35, 40, 40, 40, 45, 45, 45, 51, 51, 51, 57, 57, 57, 63, 63, 63, 70, 70, 70, 77, 77, 77, 84, 84, 84, 92, 92, 92, 100, 100, 100
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3 or 9. - Reinhard Zumkeller, Aug 12 2011
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
FORMULA
G.f.: 1/((1-x)*(1-x^3)*(1-x^9)).
a(n) = floor((6*(floor(n/3) +1)*(3*floor(n/3) -n +1) +n^2 +13*n +58)/54). - Tani Akinari, Jul 12 2013
MAPLE
1/((1-x)*(1-x^3)*(1-x^9)): seq(coeff(series(%, x, n+1), x, n), n=0..70);
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1-x^3)*(1-x^9)), {x, 0, 70}], x] (* G. C. Greubel, Sep 06 2019 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^9))) \\ G. C. Greubel, Sep 06 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^9)) )); // G. C. Greubel, Sep 06 2019
(Sage)
def A008649_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^3)*(1-x^9))).list()
A008649_list(70) # G. C. Greubel, Sep 06 2019
CROSSREFS
Sequence in context: A032562 A076973 A337931 * A008650 A062051 A179269
KEYWORD
nonn,easy
STATUS
approved