login
A112344
Number of partitions of n into perfect powers.
12
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 4, 2, 1, 0, 4, 2, 1, 0, 6, 5, 2, 2, 6, 5, 2, 2, 10, 8, 5, 4, 13, 8, 5, 4, 17, 14, 8, 9, 20, 17, 8, 9, 26, 24, 15, 14, 34, 27, 19, 14, 40, 38, 27, 25, 48, 47, 31, 30, 58, 59, 44, 42, 75, 68, 55, 47, 91, 86, 70, 67, 110, 106, 81, 81, 130, 134, 104
OFFSET
1,8
LINKS
Eric Weisstein's World of Mathematics, Perfect Power
Eric Weisstein's World of Mathematics, Partition
EXAMPLE
a(20) = #{16+4, 8+8+4, 8+4+4+4, 4+4+4+4+4} = 4.
MAPLE
N:= 200: # to get a(1) to a(N)
Pows:= {seq(seq(k^p, p=2..floor(log[k](N))), k=2..floor(sqrt(N)))}:
g:= proc(n, q) option remember; if n = 0 then 1 else `+`(seq(procname(n-r, r), r=select(`<=`, Pows, min(q, n)))) fi end proc:
seq(g(n, n), n=1..N); # Robert Israel, Nov 04 2015
MATHEMATICA
M = 200; (* to get a(1) to a(M) *)
Pows = Table[k^p, {k, 2, Floor[Sqrt[M]]}, {p, 2, Floor[Log[k, M]]}] // Flatten // Union;
g[n_, q_] := g[n, q] = If[n == 0, 1, Plus @@ Table[g[n - r, r], {r, Select[Pows, # <= Min[q, n]&]}]];
Table[g[n, n], {n, 1, M}] (* Jean-François Alcover, Feb 03 2018, translated from Robert Israel's Maple code *)
PROG
(PARI) leastp(n) = {while(!ispower(n), n--; if (n==0, return (0))); n; }
a(n) = {pmax = leastp(n); if (! pmax, return (0)); nb = 0; forpart(p=n, nb += (#select(x->ispower(x), Vec(p)) == #p), [4, pmax]); nb; } \\ Michel Marcus, Nov 04 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 05 2005
STATUS
approved