login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112344 Number of partitions of n into perfect powers. 7
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 4, 2, 1, 0, 4, 2, 1, 0, 6, 5, 2, 2, 6, 5, 2, 2, 10, 8, 5, 4, 13, 8, 5, 4, 17, 14, 8, 9, 20, 17, 8, 9, 26, 24, 15, 14, 34, 27, 19, 14, 40, 38, 27, 25, 48, 47, 31, 30, 58, 59, 44, 42, 75, 68, 55, 47, 91, 86, 70, 67, 110, 106, 81, 81, 130, 134, 104 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Perfect Power

Eric Weisstein's World of Mathematics, Partition

EXAMPLE

a(20) = #{16+4, 8+8+4, 8+4+4+4, 4+4+4+4+4} = 4.

MAPLE

N:= 200: # to get a(1) to a(N)

Pows:= {seq(seq(k^p, p=2..floor(log[k](N))), k=2..floor(sqrt(N)))}:

g:= proc(n, q) option remember; if n = 0 then 1 else `+`(seq(procname(n-r, r), r=select(`<=`, Pows, min(q, n)))) fi end proc:

seq(g(n, n), n=1..N); # Robert Israel, Nov 04 2015

MATHEMATICA

M = 200; (* to get a(1) to a(M) *)

Pows = Table[k^p, {k, 2, Floor[Sqrt[M]]}, {p, 2, Floor[Log[k, M]]}] // Flatten // Union;

g[n_, q_] := g[n, q] = If[n == 0, 1, Plus @@ Table[g[n - r, r], {r, Select[Pows, # <= Min[q, n]&]}]];

Table[g[n, n], {n, 1, M}] (* Jean-François Alcover, Feb 03 2018, translated from Robert Israel's Maple code *)

PROG

(PARI) leastp(n) = {while(!ispower(n), n--; if (n==0, return (0))); n; }

a(n) = {pmax = leastp(n); if (! pmax, return (0)); nb = 0; forpart(p=n, nb += (#select(x->ispower(x), Vec(p)) == #p), [4, pmax]); nb; } \\ Michel Marcus, Nov 04 2015

CROSSREFS

Cf. A001597, A000041, A001156, A078134, A062051, A112345.

Sequence in context: A025872 A280125 A280586 * A294080 A294019 A123721

Adjacent sequences:  A112341 A112342 A112343 * A112345 A112346 A112347

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Sep 05 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 08:37 EDT 2020. Contains 334587 sequences. (Running on oeis4.)