login
A280125
Expansion of Product_{k>=1} 1/((1 - x^(prime(k)^2))*(1 - x^(prime(k)^3))).
2
1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 3, 2, 1, 0, 4, 4, 2, 2, 4, 4, 2, 2, 5, 6, 4, 4, 7, 6, 4, 4, 8, 8, 6, 7, 10, 10, 6, 7, 11, 13, 9, 10, 15, 15, 12, 10, 16, 18, 16, 14, 20, 22, 19, 17, 21, 25, 23, 22, 26, 29, 28, 25, 30, 32, 33, 31, 37, 38, 38, 37
OFFSET
0,9
COMMENTS
Number of partitions of n into parts that are squares of primes (A001248) or cubes of primes (A030078).
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(prime(k)^2))*(1 - x^(prime(k)^3))).
EXAMPLE
a(16) = 3 because we have [8, 8], [8, 4, 4] and [4, 4, 4, 4].
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/((1 - x^Prime[k]^2) (1 - x^Prime[k]^3)), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 26 2016
STATUS
approved