login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168313
Triangle read by rows, retain 1's as rightmost diagonal of A101688 and replace all other 1's with 2's.
2
1, 0, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 2, 1, 0, 0, 0, 2, 2, 1, 0, 0, 0, 2, 2, 2, 1, 0, 0, 0, 0, 2, 2, 2, 1, 0, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1
OFFSET
1,5
COMMENTS
Row sums = odd integers repeated: (1, 1, 3, 3, 5, 5,...).
Eigensequence of the triangle = A168314: (1, 1, 3, 5, 13, 29, 71, 165, 401,...).
LINKS
FORMULA
Triangle read by rows, retain 1's as rightmost diagonal of A101688 and replace all other 1's with 2's.
From Boris Putievskiy, Jan 09 2013: (Start)
a(n) = 2*A101688(n)-A023531(n).
a(n) = 2*floor((2*A002260(n)+1)/(A003056(n)+3))*A002260(n)-A023531(n).
a(n) = 2*floor((2*n-t*(t+1)+1)/(t+3))*(n-t*(t+1)/2) - floor((sqrt(8*n+1)-1)/2) + t, where t = floor((-1+sqrt(8*n-7))/2). (End)
EXAMPLE
First few rows of the triangle =
1;
0, 1;
0, 2, 1;
0, 0, 2, 1;
0, 0, 2, 2, 1;
0, 0, 0, 2, 2, 1;
0, 0, 0, 2, 2, 2, 1;
0, 0, 0, 0, 2, 2, 2, 1;
0, 0, 0, 0, 2, 2, 2, 2, 1;
0, 0, 0, 0, 0, 2, 2, 2, 2, 1;
0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1;
0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1;
...
MATHEMATICA
rows = 11;
A = Array[Which[#1 == 1, 1, #1 <= #2, 2, True, 0]&, {rows, rows}];
Table[A[[i-j+1, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* Jean-François Alcover, Aug 08 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 22 2009
STATUS
approved