login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101688 Once 1, once 0, repeat, twice 1, twice 0, repeat, thrice 1, thrice 0... and so on. 16
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The definition is that of a linear sequence. Equivalently, define a (0,1) infinite lower triangular matrix T(n,k) (0 <= k <= n) by T(n,k) = 1 if k >= n/2, 0 otherwise, and read it by rows. The triangle T begins:

  1

  0 1

  0 1 1

  0 0 1 1

  0 0 1 1 1

  0 0 0 1 1 1

...  The matrix T is used in A168508. [Comment revised by N. J. A. Sloane, Dec 05 2020]

Also, square array A read by antidiagonals upwards: A(n,k) = 1 if k >= n, 0 otherwise.

For n >= 1, T(n,k) = number of partitions of n into k parts of sizes 1 or 2. - Nicolae Boicu, Aug 23 2018

LINKS

Table of n, a(n) for n=0..101.

Boris Putievskiy, Transformations (of) Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.

FORMULA

G.f.: 1/[(1-xy)(1-y)]. k-th row of array: x^(k-1)/(1-x).

T(n, k) = if(binomial(k, n-k)>0, 1, 0). - Paul Barry, Aug 23 2005

From Boris Putievskiy, Jan 09 2013: (Start)

a(n) = floor((2*A002260(n)+1)/A003056(n)+3).

a(n) = floor((2*n-t*(t+1)+1)/(t+3)), where

t = floor((-1+sqrt(8*n-7))/2). (End)

a(n) = floor(sqrt(2*n+1)) - floor(sqrt(2*n+2) - 1/2). - Ridouane Oudra, Jul 16 2020

EXAMPLE

The array A (on the left) and the triangle T of its antidiagonals (on the right):

.1 1 1 1 1 1 1 1 1 ......... 1

.0 1 1 1 1 1 1 1 1 ........ 0 1

.0 0 1 1 1 1 1 1 1 ....... 0 1 1

.0 0 0 1 1 1 1 1 1 ...... 0 0 1 1

.0 0 0 0 1 1 1 1 1 ..... 0 0 1 1 1

.0 0 0 0 0 1 1 1 1 .... 0 0 0 1 1 1

.0 0 0 0 0 0 1 1 1 ... 0 0 0 1 1 1 1

.0 0 0 0 0 0 0 1 1 .. 0 0 0 0 1 1 1 1

.0 0 0 0 0 0 0 0 1 . 0 0 0 0 1 1 1 1 1

MATHEMATICA

rows = 15; A = Array[If[#1 <= #2, 1, 0]&, {rows, rows}]; Table[A[[i-j+1, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* Jean-François Alcover, May 04 2017 *)

CROSSREFS

Row sums of T (and antidiagonal sums of A) are A008619.

Cf. A079813, A168508.

Sequence in context: A087748 A117446 A187034 * A155029 A155031 A134540

Adjacent sequences:  A101685 A101686 A101687 * A101689 A101690 A101691

KEYWORD

nonn,tabl

AUTHOR

Ralf Stephan, Dec 19 2004

EXTENSIONS

Edited by N. J. A. Sloane, Dec 05 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 05:20 EST 2021. Contains 349426 sequences. (Running on oeis4.)