The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101688 Once 1, once 0, repeat, twice 1, twice 0, repeat, thrice 1, thrice 0... and so on. 18
 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The definition is that of a linear sequence. Equivalently, define a (0,1) infinite lower triangular matrix T(n,k) (0 <= k <= n) by T(n,k) = 1 if k >= n/2, 0 otherwise, and read it by rows. The triangle T begins: 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 ... The matrix T is used in A168508. [Comment revised by N. J. A. Sloane, Dec 05 2020] Also, square array A read by antidiagonals upwards: A(n,k) = 1 if k >= n, 0 otherwise. For n >= 1, T(n,k) = number of partitions of n into k parts of sizes 1 or 2. - Nicolae Boicu, Aug 23 2018 LINKS Boris Putievskiy, Transformations (of) Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012. FORMULA G.f.: 1/[(1-xy)(1-y)]. k-th row of array: x^(k-1)/(1-x). T(n, k) = if(binomial(k, n-k)>0, 1, 0). - Paul Barry, Aug 23 2005 From Boris Putievskiy, Jan 09 2013: (Start) a(n) = floor((2*A002260(n)+1)/A003056(n)+3). a(n) = floor((2*n-t*(t+1)+1)/(t+3)), where t = floor((-1+sqrt(8*n-7))/2). (End) a(n) = floor(sqrt(2*n+1)) - floor(sqrt(2*n+1) - 1/2). - Ridouane Oudra, Jul 16 2020 a(n) = A103128(n+1) - A003056(n). - Ridouane Oudra, Apr 09 2022 EXAMPLE The array A (on the left) and the triangle T of its antidiagonals (on the right): .1 1 1 1 1 1 1 1 1 ......... 1 .0 1 1 1 1 1 1 1 1 ........ 0 1 .0 0 1 1 1 1 1 1 1 ....... 0 1 1 .0 0 0 1 1 1 1 1 1 ...... 0 0 1 1 .0 0 0 0 1 1 1 1 1 ..... 0 0 1 1 1 .0 0 0 0 0 1 1 1 1 .... 0 0 0 1 1 1 .0 0 0 0 0 0 1 1 1 ... 0 0 0 1 1 1 1 .0 0 0 0 0 0 0 1 1 .. 0 0 0 0 1 1 1 1 .0 0 0 0 0 0 0 0 1 . 0 0 0 0 1 1 1 1 1 MATHEMATICA rows = 15; A = Array[If[#1 <= #2, 1, 0]&, {rows, rows}]; Table[A[[i-j+1, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* Jean-François Alcover, May 04 2017 *) CROSSREFS Row sums of T (and antidiagonal sums of A) are A008619. Cf. A079813, A168508. Cf. A103128, A003056. Sequence in context: A087748 A117446 A187034 * A155029 A155031 A134540 Adjacent sequences: A101685 A101686 A101687 * A101689 A101690 A101691 KEYWORD nonn,tabl AUTHOR Ralf Stephan, Dec 19 2004 EXTENSIONS Edited by N. J. A. Sloane, Dec 05 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 12:40 EST 2022. Contains 358441 sequences. (Running on oeis4.)