login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187034
Number triangle T(n,k) = (-1)^(n-k) if binomial(k, n-k) > 0, 0 otherwise, with 0 <= k <= n.
4
1, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, 1
OFFSET
0
COMMENTS
Alternating sign version of A101688. A187036 is an eigensequence. Diagonal sums are A187035. Row sums are A133872.
LINKS
Boris Putievskiy, Transformations (of) Integer Sequences And Pairing Functions, 2012, arXiv:1212.2732 [math.CO], 2012.
FORMULA
From Boris Putievskiy, Jan 09 2013: (Start)
a(n) = A101688(n)*(-1)^(A003056(n) + A002260(n) + 1).
a(n) = floor((2*A002260(n)+1)/(A003056(n)+3))*(-1)^(A003056(n) + A002260(n) + 1).
a(n) = floor((2*n-t*(t+1)+1)/(t+3))*(-1)^(n-t*(t-1)/2+1), n > 0, where t = floor((-1+sqrt(8*n-7))/2). (End)
EXAMPLE
Triangle begins
1;
0, 1;
0, -1, 1;
0, 0, -1, 1;
0, 0, 1, -1, 1;
0, 0, 0, 1, -1, 1;
0, 0, 0, -1, 1, -1, 1;
0, 0, 0, 0, -1, 1, -1, 1;
0, 0, 0, 0, 1, -1, 1, -1, 1;
0, 0, 0, 0, 0, 1, -1, 1, -1, 1;
0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1;
0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1;
0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1;
MATHEMATICA
T[n_, k_] := Boole[n <= 2k] (-1)^(n-k);
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 05 2018 *)
PROG
(PARI) T(n, k)=if(n<=2*k, (-1)^(n-k), 0) \\ Charles R Greathouse IV, Dec 28 2011
CROSSREFS
Sequence in context: A127241 A087748 A117446 * A101688 A155029 A155031
KEYWORD
sign,tabl,easy
AUTHOR
Paul Barry, Mar 08 2011
STATUS
approved