login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117446
Triangle T(n, k) = binomial(L(k/3), n-k) where L(j/p) is the Legendre symbol of j and p, read by rows.
4
1, 0, 1, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, 0, 1, 0, 0, -1, 0, 1, 1, 0, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, -1, 0, 1, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 1, 1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 1
OFFSET
0,1
FORMULA
T(n, k) = binomial(L(k/3), n-k), where L(j/p) is the Legendre symbol of j and p.
Sum_{k=0..n} T(n, k) = A117447(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A117448(n) (diagonal sums).
EXAMPLE
Triangle begins
1;
0, 1;
0, 1, 1;
0, 0, -1, 1;
0, 0, 1, 0, 1;
0, 0, -1, 0, 1, 1;
0, 0, 1, 0, 0, -1, 1;
0, 0, -1, 0, 0, 1, 0, 1;
0, 0, 1, 0, 0, -1, 0, 1, 1;
0, 0, -1, 0, 0, 1, 0, 0, -1, 1;
0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 1;
0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 1, 1;
0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 1;
0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 1;
0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 1, 1;
MATHEMATICA
Table[Binomial[JacobiSymbol[k, 3], n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 02 2021 *)
PROG
(Sage) flatten([[binomial(kronecker(k, 3), n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 02 2021
CROSSREFS
Cf. A117447 (row sums), A117448 (diagonal sums), A117449 (inverse).
Sequence in context: A167371 A127241 A087748 * A187034 A101688 A155029
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved