login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117445
Periodic {0,-1,1,4,-1,4,-4,-4,1,1,-4,-4,4,-1,4,1,-1} (period 17).
0
0, -1, 1, 4, -1, 4, -4, -4, 1, 1, -4, -4, 4, -1, 4, 1, -1, 0, -1, 1, 4, -1, 4, -4, -4, 1, 1, -4, -4, 4, -1, 4, 1, -1, 0, -1, 1, 4, -1, 4, -4, -4, 1, 1, -4, -4, 4, -1, 4, 1, -1, 0, -1, 1, 4, -1, 4, -4, -4, 1, 1, -4, -4, 4, -1, 4, 1, -1, 0, -1, 1, 4, -1, 4, -4, -4, 1, 1, -4, -4
OFFSET
0,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1).
FORMULA
G.f.: (-1)*x*(1+x)*(1-x)^2*(1 -3*x^2 -3*x^3 -10*x^4 -6*x^5 -9*x^6 -6*x^7 -10*x^8 -3*x^9 -3*x^10 +x^12)/(1-x^17).
a(n) = (1/2)*Sum_{k=0..17} L(k*(k^2-n)/17), where L(j/p) is the Legendre symbol of j and p.
G.f.: (-x)*(1-x)*(1+x)*(1 -3*x^2 -3*x^3 -10*x^4 -6*x^5 -9*x^6 -6*x^7 -10*x^8 -3*x^9 -3*x^10 +x^12) )/(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 +x^12 +x^13 +x^14 +x^15 +x^16). - R. J. Mathar, Feb 23 2015
MATHEMATICA
PadRight[{}, 60, {0, -1, 1, 4, -1, 4, -4, -4, 1, 1, -4, -4, 4, -1, 4, 1, -1}] (* Harvey P. Dale, Sep 11 2012 *)
LinearRecurrence[{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, -1, 1, 4, -1, 4, -4, -4, 1, 1, -4, -4, 4, -1, 4, 1}, 80]
(* Ray Chandler, Jul 15 2015 *)
CROSSREFS
Cf. A117444.
Sequence in context: A021711 A334487 A327304 * A145079 A196222 A035646
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved