The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327304 Digits of one of the two 5-adic integers sqrt(-9) that is related to A327302. 3
 1, 4, 1, 4, 4, 3, 3, 0, 2, 4, 2, 2, 1, 2, 0, 0, 3, 3, 2, 2, 1, 4, 2, 2, 0, 2, 3, 0, 3, 0, 4, 4, 4, 2, 0, 3, 3, 1, 3, 3, 4, 0, 3, 2, 3, 2, 2, 3, 3, 2, 4, 4, 1, 3, 2, 4, 0, 2, 4, 1, 0, 0, 4, 4, 4, 4, 3, 0, 4, 1, 0, 4, 3, 0, 0, 1, 1, 4, 2, 1, 2, 1, 1, 1, 3, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is the 5-adic solution to x^2 = -9 that ends in 1. A327305 gives the other solution that ends in 4. LINKS G. P. Michon, Introduction to p-adic integers, Numericana. FORMULA For n > 0, a(n) is the unique m in {0, 1, 2, 3, 4} such that (A327302(n) + m*5^n)^2 + 9 is divisible by 5^(n+1). a(n) = (A327302(n+1) - A327302(n))/5^n. For n > 0, a(n) = 4 - A327305(n). EXAMPLE Equals ...3313302444030320224122330021224203344141. PROG (PARI) a(n) = truncate(-sqrt(-9+O(5^(n+1))))\5^n CROSSREFS Cf. A327302, A327303. Digits of 5-adic square roots: this sequence, A327305 (sqrt(-9)); A324029, A324030 (sqrt(-6)); A269591, A269592 (sqrt(-4)); A210850, A210851 (sqrt(-1)); A324025, A324026 (sqrt(6)). Sequence in context: A267633 A021711 A334487 * A117445 A145079 A196222 Adjacent sequences:  A327301 A327302 A327303 * A327305 A327306 A327307 KEYWORD nonn,base AUTHOR Jianing Song, Sep 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 17:37 EDT 2020. Contains 334684 sequences. (Running on oeis4.)