login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327304 Digits of one of the two 5-adic integers sqrt(-9) that is related to A327302. 3
1, 4, 1, 4, 4, 3, 3, 0, 2, 4, 2, 2, 1, 2, 0, 0, 3, 3, 2, 2, 1, 4, 2, 2, 0, 2, 3, 0, 3, 0, 4, 4, 4, 2, 0, 3, 3, 1, 3, 3, 4, 0, 3, 2, 3, 2, 2, 3, 3, 2, 4, 4, 1, 3, 2, 4, 0, 2, 4, 1, 0, 0, 4, 4, 4, 4, 3, 0, 4, 1, 0, 4, 3, 0, 0, 1, 1, 4, 2, 1, 2, 1, 1, 1, 3, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the 5-adic solution to x^2 = -9 that ends in 1. A327305 gives the other solution that ends in 4.

LINKS

Table of n, a(n) for n=0..87.

G. P. Michon, Introduction to p-adic integers, Numericana.

FORMULA

For n > 0, a(n) is the unique m in {0, 1, 2, 3, 4} such that (A327302(n) + m*5^n)^2 + 9 is divisible by 5^(n+1).

a(n) = (A327302(n+1) - A327302(n))/5^n.

For n > 0, a(n) = 4 - A327305(n).

EXAMPLE

Equals ...3313302444030320224122330021224203344141.

PROG

(PARI) a(n) = truncate(-sqrt(-9+O(5^(n+1))))\5^n

CROSSREFS

Cf. A327302, A327303.

Digits of 5-adic square roots:

this sequence, A327305 (sqrt(-9));

A324029, A324030 (sqrt(-6));

A269591, A269592 (sqrt(-4));

A210850, A210851 (sqrt(-1));

A324025, A324026 (sqrt(6)).

Sequence in context: A267633 A021711 A334487 * A117445 A145079 A196222

Adjacent sequences:  A327301 A327302 A327303 * A327305 A327306 A327307

KEYWORD

nonn,base

AUTHOR

Jianing Song, Sep 16 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 17:37 EDT 2020. Contains 334684 sequences. (Running on oeis4.)