The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210851 Digits of one of the two 5-adic integers sqrt(-1). 25
 3, 3, 2, 3, 1, 0, 2, 1, 4, 1, 2, 2, 4, 0, 3, 1, 2, 0, 4, 0, 1, 0, 4, 0, 3, 2, 0, 3, 0, 3, 3, 1, 3, 0, 3, 0, 2, 4, 3, 3, 1, 1, 2, 2, 0, 4, 0, 2, 0, 4, 1, 3, 2, 0, 4, 1, 1, 4, 1, 4, 4, 4, 1, 3, 1, 3, 3, 4, 1, 4, 4, 1, 0, 3, 1, 1, 1, 0, 4, 2, 2, 4, 2, 4, 3, 4, 0, 3, 3, 0, 0, 2, 3, 4, 2, 4, 4, 1, 4, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A048899 for the successive approximations to this 5-adic integer, called -u in a comment on A048898. The digits of u, the other 5-adic integer sqrt(-1), are given in A210850. a(n) is the (unique) solution of the linear congruence 2*A048899(n)*a(n) + A210849(n) == 0 (mod 5), n>=1. Therefore only the values 0, 1, 2, 3 and 4 appear. See the Nagell reference given in A210848, eq. (6) on p. 86 adapted to this case. a(0)=3 follows from the formula given below. If n>0, a(n) == -(A210849(n)) (mod 5), since A048899(n) == 3 (mod 5). - Álvar Ibeas, Feb 21 2017 If a(n)=0 then A048899(n+1) and A048899(n) coincide. LINKS Robert Israel, Table of n, a(n) for n = 0..10000 FORMULA a(n) = (b(n+1) - b(n))/5^n, n>=0, with b(n):=A048899(n) computed from its recurrence. A Maple program for b(n) is given there. A048899(n+1) = sum(a(k)*5^k, k=0..n), n>=0. EXAMPLE a(3) = 3 because 2*68*3 + 37 == 0 (mod 5). A048899(4) = 443 = 3*5^0 + 3*5^1 + 2*5^2 + 3*5^3. a(5) = 0 because A048899(6) = A048899(5) = 3*5^0 + 3*5^1 + 2*5^2 + 3*5^3 + 1*5^4 = 1068. MAPLE R:= select(t -> padic:-ratvaluep(t, 1)=3, [padic:-rootp(x^2+1, 5, 200)]): op([1, 1, 3], R); # Robert Israel, Mar 04 2016 PROG (PARI) a(n) = truncate(-sqrt(-1+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 05 2016 CROSSREFS Cf. A048899, A210849, A048898, A210848, A210850. Sequence in context: A309569 A292600 A014967 * A120992 A129979 A228483 Adjacent sequences:  A210848 A210849 A210850 * A210852 A210853 A210854 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Apr 30 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 00:54 EDT 2020. Contains 337440 sequences. (Running on oeis4.)