login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114525 Triangle of coefficients of the Lucas (w-)polynomials. 11
2, 0, 1, 2, 0, 1, 0, 3, 0, 1, 2, 0, 4, 0, 1, 0, 5, 0, 5, 0, 1, 2, 0, 9, 0, 6, 0, 1, 0, 7, 0, 14, 0, 7, 0, 1, 2, 0, 16, 0, 20, 0, 8, 0, 1, 0, 9, 0, 30, 0, 27, 0, 9, 0, 1, 2, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 0, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 2, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Unsigned version of A108045.

The row reversed triangle is A162514. - Paolo Bonzini, Jun 23 2016

LINKS

Table of n, a(n) for n=0..91.

B. Johnson, Fibonacci Identities by Matrix Methods and Generalisation to Related Sequences

Jong Hyun Kim, Hadamard products and tilings, JIS 12 (2009) 09.7.4

M. Pétréolle, Characterization of Cyclically Fully commutative elements in finite and affine Coxeter Groups, arXiv preprint arXiv:1403.1130 [math.GR], 2014.

Eric Weisstein's World of Mathematics, Fibonacci Polynomial

Eric Weisstein's World of Mathematics, Lucas Polynomial

FORMULA

From Peter Bala, Mar 18 2015

The Lucas polynomials L(n,x) satisfy the recurrence L(n+1,x) = x*L(n,x) + L(n-1,x) with L(0,x) = 2 and L(1,x) = x.

O.g.f.: Sum_{n >= 0} L(n,x)*t^n = (2 - x*t)/(1 - t^2 - x*t) = 2 + x*t +(x^2 + 2)*t^2 + (3*x + x^3)*t^3 + ....

L(n,x) = trace( [ x, 1; 1, 0 ]^n ).

exp( Sum_{n >= 1} L(n,x)*t^n/n ) = Sum_{n >= 0} F(n+1,x)*t^n, where F(n,x) denotes the n-th Fibonacci polynomial. (see Appendix A3 in Johnson).

exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*t^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)*F(n+3,x)*t^n.

exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n.

L(n,1) = Lucas(n) = A000032(n); L(n,4) = Lucas(3*n) = A014448(n); L(n,11) = Lucas(5*n) = A001946(n); L(n,29) = Lucas(7*n) = A087281(n); L(n,76) = Lucas(9*n) = A087287(n); L(n,199) = Lucas(11*n) = A089772(n). The general result is L(n,Lucas(2*k + 1)) = Lucas((2*k + 1)*n). (End)

From Jeremy Dover, Jun 10 2016: (Start)

Read as a triangle T(n,k), n >= 0, n >= k >= 0, T(n,k) = (Binomial((n+k)/2,k) + Binomial((n+k-2)/2,k))*(1+(-1)^(n-k))/2.

T(n,k) = A046854(n-1,k-1) + A046854(n-1,k) + A046854(n-2,k) for even n+k with n+k > 0, assuming A046854(n,k) = 0 for n < 0, k < 0, k > n.

T(n,k) is the number of binary strings of length n with exactly k pairs of consecutive 0's and no pair of consecutive 1's, where the first and last bits are considered consecutive. (End)

EXAMPLE

2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5,... give

2;

0,1;

2,0,1;

0,3,0,1;

2,0,4,0,1;

0,5,0,5,0,1;

2,0,9,0,6,0,1;

CROSSREFS

Cf. A108045 (signed version).

Cf. A034807, A162514.

Cf. Sequences L(n,x): A000032(x = 1), A002203 (x = 2), A006497 (x = 3), A014448 (x = 4), A087130 (x = 5), A085447 (x = 6), A086902 (x = 7), A086594 (x = 8), A087798 (x = 9), A086927 (x = 10), A001946 (x = 11), A086928 (x = 12), A088316 (x = 13), A090300 (x = 14), A090301 (x = 15), A090305 (x = 16), A090306 (x = 17), A090307 (x = 18), A090308 (x = 19), A090309 (x = 20), A090310 (x = 21), A090313 (x = 22), A090314 (x = 23), A090316 (x = 24), A087281 (x = 29), A087287 (x = 76), A089772 (x = 199).

Sequence in context: A238160 A178524 A212357 * A127672 A294168 A299196

Adjacent sequences:  A114522 A114523 A114524 * A114526 A114527 A114528

KEYWORD

nonn,tabl

AUTHOR

Eric W. Weisstein, Dec 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 20 22:19 EDT 2018. Contains 305615 sequences. (Running on oeis4.)