Using Lucas polynomials to find the p-adic square roots of -1, -2and -3

Peter Bala, Dec 01 2022

Let $p \equiv 1 \pmod{4}$ be a prime. From elementary number theory we know that -1 is a quadratic residue modulo p, that is, there exists an integer k, 1 < k < p-1, such that $k^2 \equiv -1 \pmod{p}$. By Hensel's lemma k lifts to a padic integer $\alpha(k) = k + a_1p + a_2p^2 + \cdots, 0 \le a_i < p-1$, such that $\alpha(k)^2 = -1$ in the ring of p-adic integers \mathbb{Z}_p . In these notes we show that $\alpha(k)$ is equal to the p-adic limit as $n \to \infty$ of the integer sequence $\{L_{p^n}(k)\}$, where $\{L_n(x)\}$ is the sequence of Lucas polynomials. We give similar results for the p-adic square roots of -2 and -3.

1. Lucas polynomials

The *n*-th Lucas polynomial $L_n(x)$ (see A114525) is defined by

$$\mathcal{L}_{n}(x) = \left(\frac{x + \sqrt{x^{2} + 4}}{2}\right)^{n} + \left(\frac{x - \sqrt{x^{2} + 4}}{2}\right)^{n}.$$
 (1)

There is an explicit expansion

$$\mathcal{L}_{n}(x) = x^{n} + \sum_{k=1}^{[n/2]} \frac{n}{n-k} \binom{n-k}{k} x^{n-2k}.$$
(2)

L(n, x) is a monic polynomial and for prime p and integer k we have

$$\mathcal{L}_p(k) \equiv k \pmod{p} \tag{3}$$

by Fermat's little theorem.

The Lucas polynomials are related to the Chebyshev polynomials of the first kind at an imaginary argument by

$$\mathcal{L}_n(x) = 2i^n \mathcal{T}_n\left(-\frac{ix}{2}\right). \tag{4}$$

Proposition 1. For integer k and prime p, the sequence $\{L_n(k) : n \ge 1\}$ satisfies the congruences

$$L_{p^n}(k) \equiv L_{p^{n-1}}(k) \pmod{p^n} \quad [n \ge 1].$$
 (5)

Sketch proof. Recall that an integer sequence $\{a(n)\}$ satisfies the Gauss congruences if

$$a\left(mp^{r}\right) \equiv a\left(mp^{r-1}\right) \pmod{p^{r}} \tag{6}$$

for all primes p and all positive integers m and r. A necessary and sufficient condition for a sequence $\{a(n)\}$ to satisfy the Gauss congruences is that the series expansion of

$$\exp\left(\sum_{n\geq 1} a(n)\frac{t^n}{n}\right)$$

has integer coefficients. Using the generating function of the Lucas polynomials it is straightforward to show that

$$\exp\left(\sum_{n\geq 1} \mathcal{L}_n(x)\frac{t^n}{n}\right) = \sum_{n\geq 0} \mathcal{F}_{n+1}(x)t^n,$$

where $F_n(x)$ denotes the *n*-th Fibonacci polynomial (see A168561);

$$F_n(x) = \frac{1}{\sqrt{x^2 + 4}} \left(\left(\frac{x + \sqrt{x^2 + 4}}{2} \right)^n - \left(\frac{x - \sqrt{x^2 + 4}}{2} \right)^n \right).$$

Thus the sequence $\{L_n(k)\}$ satisfies the Gauss congruences (6); congruence (5) is simply the particular case m = 1. \Box

An immediate consequence of Proposition 1 is that the integer sequence $\{L_{p^n}(k) : n \ge 1\}$ is a Cauchy sequence in the complete metric space of *p*-adic integers \mathbb{Z}_p . Denote the limit of this Cauchy sequence by $\alpha(k)$;

$$\alpha(k) = \lim_{n \to \infty} \operatorname{L}_{p^n}(k)$$

It follows from (5) that for $n \ge 1$,

by (3). Letting $n \to \infty$ yields

$$\alpha(k) \equiv k \pmod{p}. \tag{7}$$

Proposition 2. For p an odd prime, the polynomial $L_p(x) - x$ of degree p splits into linear factors over \mathbb{Z}_p :

$$L_p(x) - x = \prod_{k=0}^{p-1} (x - \alpha(k)).$$
(8)

Proof. The Chebyshev polynomials satisfy the composition identity [Rivlin]

$$T_n(T_m(x)) = T_{nm}(x).$$
(9)

Using this and (4) we find that the Lucas polynomials satisfy the composition identity

$$L_n(L_m(x)) = L_{nm}(x) \quad [m \text{ odd}].$$

In particular, for odd prime p and integer k,

$$\mathcal{L}_p\left(\mathcal{L}_{p^n}(k)\right) = \mathcal{L}_{p^{n+1}}(k). \tag{10}$$

Let $n \to \infty$ in (10). Since polynomials are continuous functions on \mathbb{Z}_p we obtain

$$\mathbf{L}_p\left(\alpha(k)\right) = \alpha(k).$$

Thus each p-adic integer $\alpha(k), k \in \mathbb{Z}$, is a root of $L_p(x) - x$. Now by (7), the p-adic integers $\alpha(0), \alpha(1), \ldots, \alpha(p-1)$ are distinct. We conclude that the polynomial $L_p(x) - x$ of degree p splits into linear factors over \mathbb{Z}_p as

$$L_p(x) - x = \prod_{k=0}^{p-1} (x - \alpha(k)).$$
(11)

Using this result we can use Lucas polynomials to find some p-adic square roots.

p-adic square roots of -1. Let p be a prime with $p \equiv 1 \pmod{4}$. See A002144. Then $x^2 + 1$ divides the polynomial $L_p(x) - x$ in the ring $\mathbb{Z}[x]$.

Proof. Observe first that $L_p(\sqrt{-1}) = \sqrt{-1}$. This easily follows from (4) and the fact that $T_n\left(\frac{1}{2}\right) = T_n\left(\cos\left(\frac{\pi}{3}\right)\right) = \cos\left(\frac{n\pi}{3}\right)$ by a well-known property of Chebyshev polynomials. Since $L_p(x) - x$ is a monic polynomial of degree $p \ge 3$ we can find an integral polynomial m(x) and integers a and b such that $L_p(x) - x = m(x)(x^2 + 1) + ax + b$. Setting $x = \sqrt{-1}$ yields $a\sqrt{-1} + b = 0$ and hence a = b = 0. Thus $x^2 + 1$ is a factor of the polynomial $L_p(x) - x$ in $\mathbb{Z}[x]$. \Box

From (11), it must be the case that $x^2 + 1$ splits over the ring of p-adic integers \mathbb{Z}_p as $(x - \alpha(k))(x - \alpha(p - k))$, where $0 \le k \le p - 1$ satisfies $k^2 + 1 \equiv 0 \pmod{p}$.

For example, in the case p = 5, the polynomial $L_5(x) - x$ factorises in $\mathbb{Z}[x]$ as $L_5(x) - x = x(x^2 + 1)(x^2 + 4)$ leading to the pair of factorisations in the ring $\mathbb{Z}_5[x]$

$$x^{2} + 1 = (x - \alpha(2)) (x - \alpha(3))$$

and

$$x^{2} + 4 = (x - \alpha(1)) (x - \alpha(4))$$

where $\alpha(k) = \text{limit}_{\{n \to \infty\}} L_{5^n}(k)$. The 5-adic integers $\alpha(k)$ are in the OEIS as $\alpha(1) = A269591$, $\alpha(2) = A210850$, $\alpha(3) = A210851$ and $\alpha(4) = A269592$.

Here is Maple code to display the first one hundred 5-adic digits of $\alpha(2)$. The program makes use of the recurrence $a(n) = a(n-1)^5 + 5a(n-1)^3 + 5a(n-1)$, with initial condition a(1) = k, which is satisfied by $a(n) = L_{5^n}(k)$.

k:=2:

 $a:=proc\ (n)$ option remember; if n=1 then k else $irem(a(n-1)^5+5a(n-1)^3+5a(n-1),\ 5^n)$ end if; end proc:

 $\operatorname{convert}(a(100), \operatorname{base}, 5);$

p-adic square roots of -2. Let p be a prime with $p \equiv 1 \text{ or } 3 \pmod{8}$ (these are precisely the odd primes p such that $x^2 + 2 = 0$ has a solution mod p: see A033203). Then $x^2 + 2$ divides the polynomial $L_p(x) - x$ in the ring $\mathbb{Z}[x]$.

Proof. The proof is exactly similar to that just given. In order to show that $L_p(\sqrt{-2}) = \sqrt{-2}$ we use (4) and the fact that $T_n\left(\frac{\sqrt{2}}{2}\right) = T_n\left(\cos\left(\frac{\pi}{4}\right)\right) = \cos\left(\frac{n\pi}{4}\right)$. \Box

Thus $x^2 + 2$ is a factor of the polynomial $L_p(x) - x$ in $\mathbb{Z}[x]$, and from (11) we see that $x^2 + 2$ factors over \mathbb{Z}_p as $(x - \alpha(k))(x - \alpha(p - k))$, where now $0 \le k \le p - 1$ satisfies $k^2 + 2 \equiv 0 \pmod{p}$.

For example, in the case p = 11, the polynomial $L_{11}(x) - x$ factorises in $\mathbb{Z}[x]$ as $x(x^2+2)(x^4+4x^2+1)(x^4+5x^2+5)$ leading to the factorisation of x^2+2 in the ring $\mathbb{Z}_{11}[x]$ as

$$x^{2} + 2 = (x - \alpha(3)) (x - \alpha(8)),$$

where $\alpha(k) = \text{limit}_{n \to \infty} L_{11^n}(k)$.

In addition, we have the factorisations in $\mathbb{Z}_{11}[x]$ of the quartics

$$x^{4} + 4x^{2} + 1 = (x - \alpha(2))(x - \alpha(5))(x - \alpha(6))(x - \alpha(9))$$

and

$$x^{4} + 5x^{2} + 5 = (x - \alpha(1)) (x - \alpha(4)) (x - \alpha(7)) (x - \alpha(10)).$$

p-adic square roots of -3. Let p be a prime with $p \equiv 1$ (6). See A002476. Then $x^2 + 3$ divides the polynomial $L_p(x) - x$ in the ring $\mathbb{Z}[x]$.

Proof. Again, the proof follows that given above. In order to show that $L_p(\sqrt{-3}) = \sqrt{-3}$ we use (4) and the fact that $T_n\left(\frac{\sqrt{3}}{2}\right) = T_n\left(\cos\left(\frac{\pi}{6}\right)\right) = \cos\left(\frac{n\pi}{6}\right)$. \Box

Thus, for prime p of the form 6k + 1, the quadratic $x^2 + 3$ factors over \mathbb{Z}_p as $(x - \alpha(k))(x - \alpha(p - k))$, where now $0 \le k \le p - 1$ satisfies $k^2 + 3 \equiv 0 \pmod{p}$. For example, in the case p = 7, the polynomial $L_7(x) - x$ factorises in $\mathbb{Z}[x]$ as $x(x^2 + 3)(x^4 + 4x^2 + 2)$ leading to the factorisation of $x^2 + 3$ in the ring $\mathbb{Z}_7[x]$ as

$$x^{2} + 3 = (x - \alpha(2)) (x - \alpha(5))$$

where $\alpha(k) = \text{limit}_{\{n \to \infty\}} L_{7^n}(k)$. The 7-adic integers $\alpha(2)$ and $\alpha(5)$ are recorded in the OEIS as A290796 and A290797.

In addition, we have the factorisation in $\mathbb{Z}_7[x]$ of the quartic

$$x^{4} + 4x^{2} + 2 = (x - \alpha(1)) (x - \alpha(3)) (x - \alpha(4)) (x - \alpha(6)).$$

We finish with a conjecture: for odd prime p, the sequence of polynomials $\{L_{p^n}(x) - x : n \ge 1\}$ is a divisibility sequence; that is, if n divides m then $L_{p^n}(x) - x$ divides $L_{p^m}(x) - x$ in the polynomial ring $\mathbb{Z}[x]$.

References

Rivlin, T.J., Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, (1990). Wiley, New York.