Using Lucas polynomials to find the $p$-adic square roots of $-1,-2$ and -3

Peter Bala, Dec 012022
Let $p \equiv 1(\bmod 4)$ be a prime. From elementary number theory we know that -1 is a quadratic residue modulo $p$, that is, there exists an integer $k$, $1<k<p-1$, such that $k^{2} \equiv-1(\bmod p)$. By Hensel's lemma $k$ lifts to a $p$ adic integer $\alpha(k)=k+a_{1} p+a_{2} p^{2}+\cdots, 0 \leq a_{i}<p-1$, such that $\alpha(k)^{2}=-1$ in the ring of $p$-adic integers $\mathbb{Z}_{p}$. In these notes we show that $\alpha(k)$ is equal to the $p$-adic limit as $n \rightarrow \infty$ of the integer sequence $\left\{\mathrm{L}_{p^{n}}(k)\right\}$, where $\left\{\mathrm{L}_{n}(x)\right\}$ is the sequence of Lucas polynomials. We give similar results for the $p$-adic square roots of -2 and -3 .

## 1. Lucas polynomials

The $n$-th Lucas polynomial $\mathrm{L}_{n}(x)$ (see A114525) is defined by

$$
\begin{equation*}
\mathrm{L}_{n}(x)=\left(\frac{x+\sqrt{x^{2}+4}}{2}\right)^{n}+\left(\frac{x-\sqrt{x^{2}+4}}{2}\right)^{n} \tag{1}
\end{equation*}
$$

There is an explicit expansion

$$
\begin{equation*}
\mathrm{L}_{n}(x)=x^{n}+\sum_{k=1}^{[n / 2]} \frac{n}{n-k}\binom{n-k}{k} x^{n-2 k} \tag{2}
\end{equation*}
$$

$\mathrm{L}(n, x)$ is a monic polynomial and for prime $p$ and integer $k$ we have

$$
\begin{equation*}
\mathrm{L}_{p}(k) \equiv k(\bmod p) \tag{3}
\end{equation*}
$$

by Fermat's little theorem.

The Lucas polynomials are related to the Chebyshev polynomials of the first kind at an imaginary argument by

$$
\begin{equation*}
\mathrm{L}_{n}(x)=2 i^{n} \mathrm{~T}_{n}\left(-\frac{i x}{2}\right) \tag{4}
\end{equation*}
$$

Proposition 1. For integer $k$ and prime $p$, the sequence $\left\{\mathrm{L}_{n}(k): n \geq 1\right\}$ satisfies the congruences

$$
\begin{equation*}
\mathrm{L}_{p^{n}}(k) \equiv \mathrm{L}_{p^{n-1}}(k)\left(\bmod p^{n}\right) \quad[n \geq 1] \tag{5}
\end{equation*}
$$

Sketch proof. Recall that an integer sequence $\{a(n)\}$ satisfies the Gauss congruences if

$$
\begin{equation*}
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right)\left(\bmod p^{r}\right) \tag{6}
\end{equation*}
$$

for all primes $p$ and all positive integers $m$ and $r$. A necessary and sufficient condition for a sequence $\{a(n)\}$ to satisfy the Gauss congruences is that the series expansion of

$$
\exp \left(\sum_{n \geq 1} a(n) \frac{t^{n}}{n}\right)
$$

has integer coefficients. Using the generating function of the Lucas polynomials it is straightforward to show that

$$
\exp \left(\sum_{n \geq 1} \mathrm{~L}_{n}(x) \frac{t^{n}}{n}\right)=\sum_{n \geq 0} \mathrm{~F}_{n+1}(x) t^{n}
$$

where $\mathrm{F}_{n}(x)$ denotes the $n$-th Fibonacci polynomial (see A168561);

$$
\mathrm{F}_{n}(x)=\frac{1}{\sqrt{x^{2}+4}}\left(\left(\frac{x+\sqrt{x^{2}+4}}{2}\right)^{n}-\left(\frac{x-\sqrt{x^{2}+4}}{2}\right)^{n}\right)
$$

Thus the sequence $\left\{\mathrm{L}_{n}(k)\right\}$ satisfies the Gauss congruences (6); congruence (5) is simply the particular case $m=1$.

An immediate consequence of Proposition 1 is that the integer sequence $\left\{\mathrm{L}_{p^{n}}(k): n \geq 1\right\}$ is a Cauchy sequence in the complete metric space of $p$-adic integers $\mathbb{Z}_{p}$. Denote the limit of this Cauchy sequence by $\alpha(k)$;

$$
\alpha(k)=\text { limit_ }\{n \rightarrow \infty\} \mathrm{L}_{p^{n}}(k) .
$$

It follows from (5) that for $n \geq 1$,

$$
\begin{aligned}
\mathrm{L}_{p^{n}}(k) & \equiv \mathrm{L}_{p}(k)(\bmod p) \\
& \equiv k(\bmod p)
\end{aligned}
$$

by (3). Letting $n \rightarrow \infty$ yields

$$
\begin{equation*}
\alpha(k) \equiv k(\bmod p) \tag{7}
\end{equation*}
$$

Proposition 2. For $p$ an odd prime, the polynomial $\mathrm{L}_{p}(x)-x$ of degree $p$ splits into linear factors over $\mathbb{Z}_{p}$ :

$$
\begin{equation*}
\mathrm{L}_{p}(x)-x=\prod_{k=0}^{p-1}(x-\alpha(k)) \tag{8}
\end{equation*}
$$

Proof. The Chebyshev polynomials satisfy the composition identity [Rivlin]

$$
\begin{equation*}
\mathrm{T}_{n}\left(\mathrm{~T}_{m}(x)\right)=\mathrm{T}_{n m}(x) \tag{9}
\end{equation*}
$$

Using this and (4) we find that the Lucas polynomials satisfy the composition identity

$$
\mathrm{L}_{n}\left(\mathrm{~L}_{m}(x)\right)=\mathrm{L}_{n m}(x) \quad[m \text { odd }] .
$$

In particular, for odd prime $p$ and integer $k$,

$$
\begin{equation*}
\mathrm{L}_{p}\left(\mathrm{~L}_{p^{n}}(k)\right)=\mathrm{L}_{p^{n+1}}(k) \tag{10}
\end{equation*}
$$

Let $n \rightarrow \infty$ in (10). Since polynomials are continuous functions on $\mathbb{Z}_{p}$ we obtain

$$
\mathrm{L}_{p}(\alpha(k))=\alpha(k)
$$

Thus each $p$-adic integer $\alpha(k), k \in \mathbb{Z}$, is a root of $\mathrm{L}_{p}(x)-x$. Now by (7), the $p$-adic integers $\alpha(0), \alpha(1), \ldots, \alpha(p-1)$ are distinct. We conclude that the polynomial $\mathrm{L}_{p}(x)-x$ of degree $p$ splits into linear factors over $\mathbb{Z}_{p}$ as

$$
\begin{equation*}
\mathrm{L}_{p}(x)-x=\prod_{k=0}^{p-1}(x-\alpha(k)) \tag{11}
\end{equation*}
$$

Using this result we can use Lucas polynomials to find some $p$-adic square roots.
$\mathbf{p - a d i c}$ square roots of $\mathbf{- 1}$. Let $p$ be a prime with $p \equiv 1(\bmod 4)$. See A002144. Then $x^{2}+1$ divides the polynomial $\mathrm{L}_{p}(x)-x$ in the ring $\mathbb{Z}[x]$.

Proof. Observe first that $\mathrm{L}_{p}(\sqrt{-1})=\sqrt{-1}$. This easily follows from (4) and the fact that $\mathrm{T}_{n}\left(\frac{1}{2}\right)=\mathrm{T}_{n}\left(\cos \left(\frac{\pi}{3}\right)\right)=\cos \left(\frac{n \pi}{3}\right)$ by a well-known property of Chebyshev polynomials. Since $\mathrm{L}_{p}(x)-x$ is a monic polynomial of degree $p \geq 3$ we can find an integral polynomial $m(x)$ and integers $a$ and $b$ such that $\mathrm{L}_{p}(x)-x=m(x)\left(x^{2}+1\right)+a x+b$. Setting $x=\sqrt{-1}$ yields $a \sqrt{-1}+b=0$ and hence $a=b=0$. Thus $x^{2}+1$ is a factor of the polynomial $\mathrm{L}_{p}(x)-x$ in $\mathbb{Z}[x]$.

From (11), it must be the case that $x^{2}+1$ splits over the ring of $p$-adic integers $\mathbb{Z}_{p}$ as $(x-\alpha(k))(x-\alpha(p-k))$, where $0 \leq k \leq p-1$ satisfies $k^{2}+1 \equiv$ $0(\bmod p)$.

For example, in the case $p=5$, the polynomial $\mathrm{L}_{5}(x)-x$ factorises in $\mathbb{Z}[x]$ as $\mathrm{L}_{5}(x)-x=x\left(x^{2}+1\right)\left(x^{2}+4\right)$ leading to the pair of factorisations in the ring $\mathbb{Z}_{5}[x]$

$$
x^{2}+1=(x-\alpha(2))(x-\alpha(3))
$$

and

$$
x^{2}+4=(x-\alpha(1))(x-\alpha(4))
$$

where $\alpha(k)=$ limit_ $\{n \rightarrow \infty\} \mathrm{L}_{5^{n}}(k)$. The 5 -adic integers $\alpha(k)$ are in the OEIS as $\alpha(1)=$ A269591, $\alpha(2)=$ A210850, $\alpha(3)=\mathrm{A} 210851$ and $\alpha(4)=$ A269592.

Here is Maple code to display the first one hundred 5 -adic digits of $\alpha(2)$. The program makes use of the recurrence $a(n)=a(n-1)^{5}+5 a(n-1)^{3}+5 a(n-1)$, with initial condition $a(1)=k$, which is satisfied by $a(n)=\mathrm{L}_{5^{n}}(k)$.
$\mathrm{k}:=2$ :
$\mathrm{a}:=\operatorname{proc}(\mathrm{n})$ option remember; if $\mathrm{n}=1$ then k else irem $\left(\mathrm{a}(\mathrm{n}-1)^{\wedge} 5+\right.$ $\left.5 \mathrm{a}(\mathrm{n}-1)^{\wedge} 3+5 \mathrm{a}(\mathrm{n}-1), 5^{\wedge} \mathrm{n}\right)$ end if; end proc:
convert(a(100), base, 5);
$\mathbf{p}$-adic square roots of $-\mathbf{2}$. Let $p$ be a prime with $p \equiv 1 \operatorname{or} 3(\bmod 8)$ (these are precisely the odd primes $p$ such that $x^{2}+2=0$ has a solution $\bmod p$ : see A033203). Then $x^{2}+2$ divides the polynomial $\mathrm{L}_{p}(x)-x$ in the ring $\mathbb{Z}[x]$.

Proof. The proof is exacly similar to that just given. In order to show that $\mathrm{L}_{p}(\sqrt{-2})=\sqrt{-2}$ we use (4) and the fact that $\mathrm{T}_{n}\left(\frac{\sqrt{2}}{2}\right)=\mathrm{T}_{n}\left(\cos \left(\frac{\pi}{4}\right)\right)=$ $\cos \left(\frac{n \pi}{4}\right)$.

Thus $x^{2}+2$ is a factor of the polynomial $\mathrm{L}_{p}(x)-x$ in $\mathbb{Z}[x]$, and from (11) we see that $x^{2}+2$ factors over $\mathbb{Z}_{p}$ as $(x-\alpha(k))(x-\alpha(p-k))$, where now $0 \leq k \leq p-1$ satisfies $k^{2}+2 \equiv 0(\bmod p)$.

For example, in the case $p=11$, the polynomial $\mathrm{L}_{11}(x)-x$ factorises in $\mathbb{Z}[x]$ as $x\left(x^{2}+2\right)\left(x^{4}+4 x^{2}+1\right)\left(x^{4}+5 x^{2}+5\right)$ leading to the factorisation of $x^{2}+2$ in the ring $\mathbb{Z}_{11}[x]$ as

$$
x^{2}+2=(x-\alpha(3))(x-\alpha(8)),
$$

where $\alpha(k)=$ limit_ $\{n \rightarrow \infty\} \mathrm{L}_{11^{n}}(k)$.

In addition, we have the factorisations in $\mathbb{Z}_{11}[x]$ of the quartics

$$
x^{4}+4 x^{2}+1=(x-\alpha(2))(x-\alpha(5))(x-\alpha(6))(x-\alpha(9))
$$

and

$$
x^{4}+5 x^{2}+5=(x-\alpha(1))(x-\alpha(4))(x-\alpha(7))(x-\alpha(10)) .
$$

$\mathbf{p - a d i c}$ square roots of -3. Let $p$ be a prime with $p \equiv 1$ (6). See A002476. Then $x^{2}+3$ divides the polynomial $\mathrm{L}_{p}(x)-x$ in the ring $\mathbb{Z}[x]$.

Proof. Again, the proof follows that given above. In order to show that $\mathrm{L}_{p}(\sqrt{-3})=\sqrt{-3}$ we use (4) and the fact that $\mathrm{T}_{n}\left(\frac{\sqrt{3}}{2}\right)=\mathrm{T}_{n}\left(\cos \left(\frac{\pi}{6}\right)\right)=$ $\cos \left(\frac{n \pi}{6}\right)$.

Thus, for prime $p$ of the form $6 k+1$, the quadratic $x^{2}+3$ factors over $\mathbb{Z}_{p}$ as $(x-\alpha(k))(x-\alpha(p-k))$, where now $0 \leq k \leq p-1$ satisfies $k^{2}+3 \equiv$ $0(\bmod p)$. For example, in the case $p=7$, the polynomial $\mathrm{L}_{7}(x)-x$ factorises in $\mathbb{Z}[x]$ as $x\left(x^{2}+3\right)\left(x^{4}+4 x^{2}+2\right)$ leading to the factorisation of $x^{2}+3$ in the ring $\mathbb{Z}_{7}[x]$ as

$$
x^{2}+3=(x-\alpha(2))(x-\alpha(5))
$$

where $\alpha(k)=$ limit_ $\{n \rightarrow \infty\} \mathrm{L}_{7^{n}}(k)$. The 7 -adic integers $\alpha(2)$ and $\alpha(5)$ are recorded in the OEIS as A290796 and A290797.

In addition, we have the factorisation in $\mathbb{Z}_{7}[x]$ of the quartic

$$
x^{4}+4 x^{2}+2=(x-\alpha(1))(x-\alpha(3))(x-\alpha(4))(x-\alpha(6)) .
$$

We finish with a conjecture: for odd prime $p$, the sequence of polynomials $\left\{\mathrm{L}_{p^{n}}(x)-x: n \geq 1\right\}$ is a divisibility sequence; that is, if $n$ divides $m$ then $\mathrm{L}_{p^{n}}(x)-x$ divides $\mathrm{L}_{p^{m}}(x)-x$ in the polynomial ring $\mathbb{Z}[x]$.

## References

Rivlin, T.J., Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, (1990). Wiley, New York.

