The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324026 Digits of one of the two 5-adic integers sqrt(6) that is related to A324024. 9
 4, 1, 4, 0, 2, 3, 2, 1, 3, 1, 1, 4, 1, 1, 2, 1, 2, 2, 2, 0, 1, 1, 3, 0, 4, 3, 2, 4, 4, 4, 1, 1, 3, 0, 3, 4, 3, 2, 0, 3, 0, 3, 3, 4, 2, 0, 0, 1, 4, 2, 1, 0, 3, 3, 0, 1, 0, 2, 0, 2, 3, 3, 2, 0, 0, 1, 2, 1, 3, 3, 4, 3, 0, 2, 1, 0, 0, 0, 0, 4, 1, 1, 3, 2, 1, 2, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This square root of 6 in the 5-adic field ends with digit 4. The other, A324025, ends with digit 1. LINKS Table of n, a(n) for n=0..87. Wikipedia, p-adic number FORMULA a(n) = (A324024(n+1) - A324024(n))/5^n. For n > 0, a(n) = 4 - A324025(n). Equals A210850*A324029 = A210851*A324030, where each A-number represents a 5-adic number. EXAMPLE The solution to x^2 == 6 (mod 5^4) such that x == 4 (mod 5) is x == 109 (mod 5^4), and 109 is written as 414 in quinary, so the first four terms are 4, 1, 4 and 0. PROG (PARI) a(n) = truncate(-sqrt(6+O(5^(n+1))))\5^n CROSSREFS Cf. A324023, A324024. Digits of 5-adic square roots: A324029, A324030 (sqrt(-6)); A269591, A269592 (sqrt(-4)); A210850, A210851 (sqrt(-1)); A324025, this sequence (sqrt(6)). Sequence in context: A298568 A152890 A143354 * A171539 A106141 A082999 Adjacent sequences: A324023 A324024 A324025 * A324027 A324028 A324029 KEYWORD nonn,base AUTHOR Jianing Song, Sep 07 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 17:49 EDT 2023. Contains 365666 sequences. (Running on oeis4.)