login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324024
One of the two successive approximations up to 5^n for 5-adic integer sqrt(6). This is the 4 (mod 5) case (except for n = 0).
9
0, 4, 9, 109, 109, 1359, 10734, 41984, 120109, 1291984, 3245109, 13010734, 208323234, 452463859, 1673166984, 13880198234, 44397776359, 349573557609, 1875452463859, 9504846995109, 9504846995109, 104872278635734, 581709436838859, 7734266809885734, 7734266809885734
OFFSET
0,2
COMMENTS
For n > 0, a(n) is the unique solution to x^2 == 6 (mod 5^n) in the range [0, 5^n - 1] and congruent to 1 modulo 5.
A324023 is the approximation (congruent to 4 mod 5) of another square root of 6 over the 5-adic field.
FORMULA
For n > 0, a(n) = 5^n - A324023(n).
a(n) = A048898(n)*A324027(n) mod 5^n = A048899(n)*A324028(n) mod 5^n.
EXAMPLE
9^2 = 81 = 3*5^2 + 6;
109^2 = 11881 = 95*5^3 + 6 = 19*5^4 + 6;
1359^2 = 1846881 = 591*5^5 + 6.
PROG
(PARI) a(n) = truncate(-sqrt(6+O(5^n)))
CROSSREFS
Approximations of 5-adic square roots:
A324027, A324028 (sqrt(-6));
A268922, A269590 (sqrt(-4));
A048898, A048899 (sqrt(-1));
A324023, this sequence (sqrt(6)).
Sequence in context: A061272 A117680 A042649 * A042381 A230743 A367075
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 07 2019
STATUS
approved