The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324027 One of the two successive approximations up to 5^n for 5-adic integer sqrt(-6). This is the 2 (mod 5) case (except for n = 0). 7
 0, 2, 12, 37, 162, 1412, 10787, 42037, 354537, 1526412, 3479537, 3479537, 3479537, 247620162, 3909729537, 10013245162, 101565979537, 711917542037, 2237796448287, 13681888245162, 51828860901412, 337931155823287, 1291605472229537, 10828348636292037, 58512064456604537 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n > 0, a(n) is the unique solution to x^2 == -6 (mod 5^n) in the range [0, 5^n - 1] and congruent to 2 modulo 5. A324028 is the approximation (congruent to 3 mod 5) of another square root of 6 over the 5-adic field. LINKS Wikipedia, p-adic number FORMULA For n > 0, a(n) = 5^n - A324028(n). a(n) = A048898(n)*A324023(n) mod 5^n = A048899(n)*A324024(n) mod 5^n. EXAMPLE 12^2 = 144 = 6*5^2 - 6; 37^2 = 1369 = 11*5^3 - 6; 162^2 = 26244 = 42*5^4 - 6. PROG (PARI) a(n) = truncate(sqrt(-6+O(5^n))) CROSSREFS Cf. A048898, A048899, A324029, A324030. Approximations of 5-adic square roots: this sequence, A324028 (sqrt(-6)); A268922, A269590 (sqrt(-4)); A048898, A048899 (sqrt(-1)); A324023, A324024 (sqrt(6)). Sequence in context: A330781 A185788 A305864 * A035597 A000913 A026575 Adjacent sequences:  A324024 A324025 A324026 * A324028 A324029 A324030 KEYWORD nonn AUTHOR Jianing Song, Sep 07 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 14:47 EDT 2021. Contains 346307 sequences. (Running on oeis4.)