OFFSET
1,3
LINKS
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
FORMULA
From Emeric Deutsch, Dec 19 2004: (Start)
a(n) = (1/4)*c(n+2) - (1/2)*c(n+1) - (3/4)*c((n+1)/2) + (1/2)*c((n-1)/4), where c(n) = binomial(2n, n)/(n+1) are the Catalan numbers for n a nonnegative integer and 0 otherwise.
G.f.: (-4x + 8x^2 - sqrt(1-4x) + 2x*sqrt(1-4x) + 3*sqrt(1-4x^2) - 2*sqrt(1-4x^4))/(8x^3). (End)
MAPLE
c:=proc(n) if floor(n)=n then binomial(2*n, n)/(n+1) else 0 fi end:a:=n->(1/4)*c(n+2)-(1/2)*c(n+1)-(3/4)*c((n+1)/2)+(1/2)*c((n-1)/4):seq(a(n), n=1..27); # Emeric Deutsch, Dec 19 2004
MATHEMATICA
c[n_] := If[Floor[n] == n, Binomial[2 n, n]/(n + 1), 0]; a[n_] := (1/4)*c[n + 2] - (1/2)*c[n + 1] - (3/4)*c[(n + 1)/2] + (1/2)*c[(n - 1)/4]; Table[a[n], {n, 1, 25}] (* James C. McMahon, Dec 09 2023 after MAPLE by Emeric Deutsch *)
PROG
(PARI) c(n) = if ((n<0) || (denominator(n) > 1), 0, binomial(2*n, n)/(n+1));
a(n) = (1/4)*c(n+2) - (1/2)*c(n+1) - (3/4)*c((n+1)/2) + (1/2)*c((n-1)/4); \\ Michel Marcus, Aug 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)
EXTENSIONS
More terms from Emeric Deutsch, Dec 19 2004
STATUS
approved