login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000910 a(n) = 5*binomial(n, 6).
(Formerly M3973 N1643)
6
0, 0, 0, 0, 0, 0, 5, 35, 140, 420, 1050, 2310, 4620, 8580, 15015, 25025, 40040, 61880, 92820, 135660, 193800, 271320, 373065, 504735, 672980, 885500, 1151150, 1480050, 1883700, 2375100, 2968875, 3681405, 4530960, 5537840, 6724520, 8115800, 9738960, 11623920, 13803405 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

REFERENCES

Charles Jordan, Calculus of Finite Differences, Budapest, 1939, p. 449.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n) = 5*A000579(n+3) = A080159(n+3, 3).

G.f.: 5*x^6/(1-x)^7. - Colin Barker, Mar 01 2012

E.g.f.: x^6*exp(x)/144. - G. C. Greubel, May 22 2022

From Amiram Eldar, Jul 19 2022: (Start)

Sum_{n>=6} 1/a(n) = 6/25.

Sum_{n>=6} (-1)^n/a(n) = 192*log(2)/5 - 661/25. (End)

MATHEMATICA

Table[5Binomial[n, 6], {n, 0, 100}] (* Stefan Steinerberger, Apr 30 2006 *)

PROG

(PARI) a(n)=5*binomial(n, 6) \\ Charles R Greathouse IV, Oct 07 2015

(SageMath) [5*binomial(n, 6) for n in (0..40)] # G. C. Greubel, May 22 2022

CROSSREFS

A diagonal of A088617.

Cf. A080159, A000579, A210569.

Sequence in context: A053126 A096743 A026697 * A005562 A097872 A184707

Adjacent sequences: A000907 A000908 A000909 * A000911 A000912 A000913

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)