OFFSET
0,5
COMMENTS
The following sequences are provided by the formula n*binomial(n,k) - binomial(n,k+1) = k*binomial(n+1,k+1):
. A000217(n) for k=1,
. A007290(n+1) for k=2,
. A050534(n) for k=3,
. a(n) for k=4,
. A000910(n+1) for k=5.
Sum of reciprocals of a(n), for n>3: 5/16.
From a(2), convolution of oblong numbers (A002378) with themselves. - Bruno Berselli, Oct 24 2016
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 3. - N. J. A. Sloane, Mar 23 2014
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
G.f.: 4*x^4/(1-x)^6.
a(n) = n*binomial(n,4)-binomial(n,5) = 4*binomial(n+1,5) = 4*A000389(n+1).
(n-4)*a(n) = (n+1)*a(n-1).
E.g.f.: (1/30)*x^4*(5+x)*exp(x). - G. C. Greubel, May 23 2022
Sum_{n>=4} (-1)^n/a(n) = 20*log(2) - 655/48. - Amiram Eldar, Jun 02 2022
MAPLE
f:=n->(n^5-5*n^3+4*n)/30;
[seq(f(n), n=0..50)]; # N. J. A. Sloane, Mar 23 2014
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 4, 24}, 39]
CoefficientList[Series[4x^4/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
Times@@@Partition[Range[-3, 40], 5, 1]/30 (* Harvey P. Dale, Sep 19 2020 *)
PROG
(Magma) [4*Binomial(n+1, 5): n in [0..38]];
(Maxima) makelist(coeff(taylor(4*x^4/(1-x)^6, x, 0, n), x, n), n, 0, 38);
(PARI) a(n)=(n-3)*(n-2)*(n-1)*n*(n+1)/30 \\ Charles R Greathouse IV, Oct 07 2015
(SageMath) [4*binomial(n+1, 5) for n in (0..40)] # G. C. Greubel, May 23 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 23 2012
STATUS
approved