login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210569
a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)/30.
6
0, 0, 0, 0, 4, 24, 84, 224, 504, 1008, 1848, 3168, 5148, 8008, 12012, 17472, 24752, 34272, 46512, 62016, 81396, 105336, 134596, 170016, 212520, 263120, 322920, 393120, 475020, 570024, 679644, 805504, 949344, 1113024, 1298528, 1507968, 1743588, 2007768, 2303028
OFFSET
0,5
COMMENTS
The following sequences are provided by the formula n*binomial(n,k) - binomial(n,k+1) = k*binomial(n+1,k+1):
. A000217(n) for k=1,
. A007290(n+1) for k=2,
. A050534(n) for k=3,
. a(n) for k=4,
. A000910(n+1) for k=5.
Sum of reciprocals of a(n), for n>3: 5/16.
From a(2), convolution of oblong numbers (A002378) with themselves. - Bruno Berselli, Oct 24 2016
LINKS
C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 3. - N. J. A. Sloane, Mar 23 2014
FORMULA
G.f.: 4*x^4/(1-x)^6.
a(n) = n*binomial(n,4)-binomial(n,5) = 4*binomial(n+1,5) = 4*A000389(n+1).
a(n) = 2*A177747(2*n-7), with A177747(-7) = A177747(-5) = A177747(-3) = A177747(-1) = 0.
(n-4)*a(n) = (n+1)*a(n-1).
E.g.f.: (1/30)*x^4*(5+x)*exp(x). - G. C. Greubel, May 23 2022
Sum_{n>=4} (-1)^n/a(n) = 20*log(2) - 655/48. - Amiram Eldar, Jun 02 2022
MAPLE
f:=n->(n^5-5*n^3+4*n)/30;
[seq(f(n), n=0..50)]; # N. J. A. Sloane, Mar 23 2014
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 4, 24}, 39]
CoefficientList[Series[4x^4/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
Times@@@Partition[Range[-3, 40], 5, 1]/30 (* Harvey P. Dale, Sep 19 2020 *)
PROG
(Magma) [4*Binomial(n+1, 5): n in [0..38]];
(Maxima) makelist(coeff(taylor(4*x^4/(1-x)^6, x, 0, n), x, n), n, 0, 38);
(PARI) a(n)=(n-3)*(n-2)*(n-1)*n*(n+1)/30 \\ Charles R Greathouse IV, Oct 07 2015
(SageMath) [4*binomial(n+1, 5) for n in (0..40)] # G. C. Greubel, May 23 2022
CROSSREFS
First differences are in A033488.
Sequence in context: A354476 A211071 A212135 * A334581 A341688 A341877
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Mar 23 2012
STATUS
approved