OFFSET
0,2
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Brian Hopkins and Aram Tangboonduangjit, Water Cells in Compositions of 1s and 2s, arXiv:2412.11528 [math.CO], 2024. See p. 3.
Index entries for linear recurrences with constant coefficients, signature (2,3,-8,-2,12,-2,-8,3,2,-1).
FORMULA
Square (1 + x + 3x^2 + 3x^3 + 6x^4 + 6x^5 + ...)
G.f.: 1/((x+1)^4*(x-1)^6). [Bruno Berselli, Mar 23 2012]
a(n) = (n+5)*(2*n*(n+10)*(n^2+10*n+35)+5*(2*n*(n+10)+39)*(-1)^n+573)/3840. [Bruno Berselli, Mar 23 2012]
EXAMPLE
As a multiplication table array:
.
1, 1, 3, 3, 6,...
1, 1, 3, 3,......
3, 3, 9,.........
3, 3,............
6,...............
.
Then taking antidiagonal sums of terms, we obtain 1, (1 + 1) = 2, (3 + 1 + 3) = 7, (3 + 3 + 3 + 3) = 12, (6, + 3 + 9 + 3 + 6) = 27, etc.
MATHEMATICA
lst = CoefficientList[ Series[1/((1 - x) (1 - x^2)^2), {x, 0, 111}], x]; t[n_, k_] := lst[[n]] lst[[k]]; f[n_] := Sum[ t[n - m + 1, m], {m, n}]; Array[f, 45] (* Robert G. Wilson v, Dec 18 2010 *)
LinearRecurrence[{2, 3, -8, -2, 12, -2, -8, 3, 2, -1}, {1, 2, 7, 12, 27, 42, 77, 112, 182, 252}, 45] (* Bruno Berselli, Mar 23 2012 *)
PROG
(Magma) A008805:=func<i|(2*i^2+10*i+11+(2*i+5)*(-1)^i)/16>; [&+[A008805(i)*A008805(n-i): i in [0..n]]: n in [0..44]]; // Bruno Berselli, Mar 23 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 17 2010
EXTENSIONS
More terms from Robert G. Wilson v, Dec 18 2010
Definition rewritten by Bruno Berselli, Mar 23 2012
STATUS
approved