login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177747
Convolution of A008805 (triangular numbers repeated) with itself.
2
1, 2, 7, 12, 27, 42, 77, 112, 182, 252, 378, 504, 714, 924, 1254, 1584, 2079, 2574, 3289, 4004, 5005, 6006, 7371, 8736, 10556, 12376, 14756, 17136, 20196, 23256, 27132, 31008, 35853, 40698, 46683, 52668, 59983, 67298, 76153, 85008, 95634, 106260, 118910, 131560, 146510
OFFSET
0,2
LINKS
Brian Hopkins and Aram Tangboonduangjit, Water Cells in Compositions of 1s and 2s, arXiv:2412.11528 [math.CO], 2024. See p. 3.
FORMULA
Square (1 + x + 3x^2 + 3x^3 + 6x^4 + 6x^5 + ...)
G.f.: 1/((x+1)^4*(x-1)^6). [Bruno Berselli, Mar 23 2012]
a(n) = (n+5)*(2*n*(n+10)*(n^2+10*n+35)+5*(2*n*(n+10)+39)*(-1)^n+573)/3840. [Bruno Berselli, Mar 23 2012]
EXAMPLE
As a multiplication table array:
.
1, 1, 3, 3, 6,...
1, 1, 3, 3,......
3, 3, 9,.........
3, 3,............
6,...............
.
Then taking antidiagonal sums of terms, we obtain 1, (1 + 1) = 2, (3 + 1 + 3) = 7, (3 + 3 + 3 + 3) = 12, (6, + 3 + 9 + 3 + 6) = 27, etc.
MATHEMATICA
lst = CoefficientList[ Series[1/((1 - x) (1 - x^2)^2), {x, 0, 111}], x]; t[n_, k_] := lst[[n]] lst[[k]]; f[n_] := Sum[ t[n - m + 1, m], {m, n}]; Array[f, 45] (* Robert G. Wilson v, Dec 18 2010 *)
LinearRecurrence[{2, 3, -8, -2, 12, -2, -8, 3, 2, -1}, {1, 2, 7, 12, 27, 42, 77, 112, 182, 252}, 45] (* Bruno Berselli, Mar 23 2012 *)
PROG
(Magma) A008805:=func<i|(2*i^2+10*i+11+(2*i+5)*(-1)^i)/16>; [&+[A008805(i)*A008805(n-i): i in [0..n]]: n in [0..44]]; // Bruno Berselli, Mar 23 2012
CROSSREFS
Cf. A008805.
Sequence in context: A059329 A242201 A350093 * A288888 A293621 A175879
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 17 2010
EXTENSIONS
More terms from Robert G. Wilson v, Dec 18 2010
Definition rewritten by Bruno Berselli, Mar 23 2012
STATUS
approved